BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 12361633)

  • 1. All-natural environmentally degradable poly (butylene terephthalate-co-caprolactone): A theoretical and experimental study of its degradation properties and mechanisms.
    Xu PY; Wang PL; Liu TY; Zhen ZC; Lu B; Huang D; Wang GX; Ji JH
    Sci Total Environ; 2023 Nov; 901():165980. PubMed ID: 37543331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Degradable and Transformable Core-Corona-Type Particles that Control Cellular Uptake by Thermal Shape Change.
    Komatsu S; Yamada S; Kikuchi A
    ACS Biomater Sci Eng; 2024 Feb; 10(2):897-904. PubMed ID: 38243792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response.
    Lee SH; Boire TC; Lee JB; Gupta MK; Zachman AL; Rath R; Sung HJ
    J Mater Chem B; 2014 Nov; 2(41):7109-7113. PubMed ID: 25343029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming a Conceptual Limitation of Industrial ε-Caprolactone Production via Chemoenzymatic Synthesis in Organic Medium.
    Bernhard L; Gröger H
    ChemSusChem; 2024 Jun; ():e202400073. PubMed ID: 38856824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties.
    Cohn N; Bradtmüller H; Zanotto E; von Marttens A; Covarrubias C
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source.
    Heyraud A; Tallia F; Sory D; Ting HK; Tchorzewska A; Liu J; Pilsworth HL; Lee PD; Hanna JV; Rankin SM; Jones JR
    Front Bioeng Biotechnol; 2023; 11():1224596. PubMed ID: 37671192
    [No Abstract]   [Full Text] [Related]  

  • 7. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment.
    Aslankoohi N; Mondal D; Rizkalla AS; Mequanint K
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Behavior and Structural Study of SiO₂/Poly(ε-caprolactone) Hybrids Synthesized via Sol-Gel Method.
    Vecchio Ciprioti S; Tuffi R; Dell'Era A; Dal Poggetto F; Bollino F
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29439383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive Glasses: Frontiers and Challenges.
    Hench LL; Jones JR
    Front Bioeng Biotechnol; 2015; 3():194. PubMed ID: 26649290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration.
    Allo BA; Costa DO; Dixon SJ; Mequanint K; Rizkalla AS
    J Funct Biomater; 2012 Jun; 3(2):432-63. PubMed ID: 24955542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes.
    Campion CR; Ball SL; Clarke DL; Hing KA
    J Mater Sci Mater Med; 2013 Mar; 24(3):597-610. PubMed ID: 23242766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(epsilon-caprolactone) composite scaffold by using prototyping controlled process.
    Ye L; Zeng X; Li H; Ai Y
    J Mater Sci Mater Med; 2010 Feb; 21(2):753-60. PubMed ID: 19784867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration.
    Ohtsuki C; Kamitakahara M; Miyazaki T
    J R Soc Interface; 2009 Jun; 6 Suppl 3(Suppl 3):S349-60. PubMed ID: 19158015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method.
    Pereira MM; Jones JR; Orefice RL; Hench LL
    J Mater Sci Mater Med; 2005 Nov; 16(11):1045-50. PubMed ID: 16388385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a bioactive and degradable poly(epsilon -caprolactone)/silica hybrid through a sol-gel method.
    Rhee SH; Choi JY; Kim HM
    Biomaterials; 2002 Dec; 23(24):4915-21. PubMed ID: 12361633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute.
    Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ
    Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of molecular weight of poly(epsilon-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(epsilon-caprolactone)/silica nano-hybrid materials.
    Rhee SH
    Biomaterials; 2003 May; 24(10):1721-7. PubMed ID: 12593953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone-like apatite-forming ability and mechanical properties of poly(epsilon-caprolactone)/silica hybrid as a function of poly(epsilon-caprolactone) content.
    Rhee SH
    Biomaterials; 2004; 25(7-8):1167-75. PubMed ID: 14643590
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.