BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12361850)

  • 1. Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes.
    Warburton MJ; Bernardini F
    Neurosci Lett; 2002 Oct; 331(2):99-102. PubMed ID: 12361850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis.
    Bernardini F; Warburton MJ
    Biochem J; 2002 Sep; 366(Pt 2):521-9. PubMed ID: 12038963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase.
    Ezaki J; Takeda-Ezaki M; Kominami E
    J Biochem; 2000 Sep; 128(3):509-16. PubMed ID: 10965052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis.
    Kopan S; Sivasubramaniam U; Warburton MJ
    Biochem Biophys Res Commun; 2004 Jun; 319(1):58-65. PubMed ID: 15158442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificity of lysosomal tripeptidyl peptidase-I determined by its action on angiotensin-II analogues.
    Warburton MJ; Bernardini F
    FEBS Lett; 2001 Jul; 500(3):145-8. PubMed ID: 11445074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I.
    Vines DJ; Warburton MJ
    FEBS Lett; 1999 Jan; 443(2):131-5. PubMed ID: 9989590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripeptidyl-peptidase I in neuronal ceroid lipofuscinoses and other lysosomal storage disorders.
    Wisniewski KE; Kida E; Walus M; Wujek P; Kaczmarski W; Golabek AA
    Eur J Paediatr Neurol; 2001; 5 Suppl A():73-9. PubMed ID: 11589013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosaminoglycans modulate activation, activity, and stability of tripeptidyl-peptidase I in vitro and in vivo.
    Golabek AA; Walus M; Wisniewski KE; Kida E
    J Biol Chem; 2005 Mar; 280(9):7550-61. PubMed ID: 15582991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of tripeptidyl peptidase I activity in living cells by fluorogenic substrates.
    Steinfeld R; Fuhrmann JC; Gärtner J
    J Histochem Cytochem; 2006 Sep; 54(9):991-6. PubMed ID: 16782851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Tripeptidyl-peptidase I--distribution, biogenesis, and mechanisms of activation].
    Gołabek AA
    Postepy Biochem; 2006; 52(1):16-23. PubMed ID: 16869297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I.
    Golabek AA; Kida E; Walus M; Wujek P; Mehta P; Wisniewski KE
    J Biol Chem; 2003 Feb; 278(9):7135-45. PubMed ID: 12488460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tripeptidyl peptidases: enzymes that count.
    Tomkinson B
    Trends Biochem Sci; 1999 Sep; 24(9):355-9. PubMed ID: 10470035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of tripeptidyl peptidase I in human tissues under normal and pathological conditions.
    Kida E; Golabek AA; Walus M; Wujek P; Kaczmarski W; Wisniewski KE
    J Neuropathol Exp Neurol; 2001 Mar; 60(3):280-92. PubMed ID: 11245212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The substrate range of tripeptidyl-peptidase I.
    Bernardini F; Warburton MJ
    Eur J Paediatr Neurol; 2001; 5 Suppl A():69-72. PubMed ID: 11589011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of tripeptidyl peptidase I in various tissues of rats and mice.
    Koike M; Shibata M; Ohsawa Y; Kametaka S; Waguri S; Kominami E; Uchiyama Y
    Arch Histol Cytol; 2002 Aug; 65(3):219-32. PubMed ID: 12389661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of tripeptidyl peptidase II. 3. Derivation of butabindide by successive structure optimizations leading to a potential general approach to designing exopeptidase inhibitors.
    Ganellin CR; Bishop PB; Bambal RB; Chan SM; Leblond B; Moore AN; Zhao L; Bourgeat P; Rose C; Vargas F; Schwartz JC
    J Med Chem; 2005 Nov; 48(23):7333-42. PubMed ID: 16279793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosegment of tripeptidyl peptidase I is a potent, slow-binding inhibitor of its cognate enzyme.
    Golabek AA; Dolzhanskaya N; Walus M; Wisniewski KE; Kida E
    J Biol Chem; 2008 Jun; 283(24):16497-504. PubMed ID: 18411270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in classical late infantile neuronal ceroid lipofuscinosis disrupt transport of tripeptidyl-peptidase I to lysosomes.
    Steinfeld R; Steinke HB; Isbrandt D; Kohlschütter A; Gärtner J
    Hum Mol Genet; 2004 Oct; 13(20):2483-91. PubMed ID: 15317752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis.
    Ezaki J; Takeda-Ezaki M; Oda K; Kominami E
    Biochem Biophys Res Commun; 2000 Feb; 268(3):904-8. PubMed ID: 10679303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I.
    Wujek P; Kida E; Walus M; Wisniewski KE; Golabek AA
    J Biol Chem; 2004 Mar; 279(13):12827-39. PubMed ID: 14702339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.