These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12362362)

  • 1. Structure and orientation of ligands bound to membrane proteins are reflected by residual dipolar couplings in solution NMR measurements.
    Koenig BW
    Chembiochem; 2002 Oct; 3(10):975-80. PubMed ID: 12362362
    [No Abstract]   [Full Text] [Related]  

  • 2. Measurement of dipolar couplings in a transducin peptide fragment weakly bound to oriented photo-activated rhodopsin.
    Koenig BW; Mitchell DC; König S; Grzesiek S; Litman BJ; Bax A
    J Biomol NMR; 2000 Feb; 16(2):121-5. PubMed ID: 10723991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings.
    Koenig BW; Kontaxis G; Mitchell DC; Louis JM; Litman BJ; Bax A
    J Mol Biol; 2002 Sep; 322(2):441-61. PubMed ID: 12217702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.
    Kisselev OG; Kao J; Ponder JW; Fann YC; Gautam N; Marshall GR
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4270-5. PubMed ID: 9539726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active states of rhodopsin.
    Ernst OP; Bartl FJ
    Chembiochem; 2002 Oct; 3(10):968-74. PubMed ID: 12362361
    [No Abstract]   [Full Text] [Related]  

  • 6. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR in drug discovery on membrane proteins.
    Wirmer-Bartoschek J; Bartoschek S
    Future Med Chem; 2012 May; 4(7):869-75. PubMed ID: 22571612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy.
    Ulmer TS; Ramirez BE; Delaglio F; Bax A
    J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of G-protein activation by rhodopsin.
    Shichida Y; Morizumi T
    Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins.
    Cierpicki T; Bushweller JH
    J Am Chem Soc; 2004 Dec; 126(49):16259-66. PubMed ID: 15584763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting G-protein-coupled receptors: structure, function, and ligand interaction.
    Schwalbe H; Wess G
    Chembiochem; 2002 Oct; 3(10):915-9. PubMed ID: 12362356
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure and dynamics of a membrane protein in micelles from three solution NMR experiments.
    Lee S; Mesleh MF; Opella SJ
    J Biomol NMR; 2003 Aug; 26(4):327-34. PubMed ID: 12815259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of class A G protein-coupled receptors with G proteins.
    Slusarz R; Ciarkowski J
    Acta Biochim Pol; 2004; 51(1):129-36. PubMed ID: 15094833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors.
    Cavasotto CN; Orry AJ; Abagyan RA
    Proteins; 2003 May; 51(3):423-33. PubMed ID: 12696053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin.
    Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD
    Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of rhodopsin: a G-protein-coupled receptor.
    Stenkamp RE; Teller DC; Palczewski K
    Chembiochem; 2002 Oct; 3(10):963-7. PubMed ID: 12362360
    [No Abstract]   [Full Text] [Related]  

  • 18. Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
    Mascioni A; Veglia G
    J Am Chem Soc; 2003 Oct; 125(41):12520-6. PubMed ID: 14531696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two simple NMR experiments for measuring dipolar couplings in asparagine and glutamine side chains.
    Permi P
    J Magn Reson; 2001 Dec; 153(2):267-72. PubMed ID: 11740905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phage-induced alignment of membrane proteins enables the measurement and structural analysis of residual dipolar couplings with dipolar waves and lambda-maps.
    Park SH; Son WS; Mukhopadhyay R; Valafar H; Opella SJ
    J Am Chem Soc; 2009 Oct; 131(40):14140-1. PubMed ID: 19761238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.