These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 12362407)
1. Fine separation and characterization of Candida rugosa lipase isoenzymes. Xin JY; Xiao-Xue Hu YX; Cui JR; Li SB; Xia CG; Zhu LM J Basic Microbiol; 2002; 42(5):355-63. PubMed ID: 12362407 [TBL] [Abstract][Full Text] [Related]
2. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825 [TBL] [Abstract][Full Text] [Related]
3. Isolation of carboxylester lipase (CEL) isoenzymes from Candida rugosa and identification of the corresponding genes. Diczfalusy MA; Hellman U; Alexson SE Arch Biochem Biophys; 1997 Dec; 348(1):1-8. PubMed ID: 9390168 [TBL] [Abstract][Full Text] [Related]
4. 'Interfacial affinity chromatography' of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups. Sabuquillo P; Reina J; Fernandez-Lorente G; Guisan JM; Fernandez-Lafuente R Biochim Biophys Acta; 1998 Nov; 1388(2):337-48. PubMed ID: 9858762 [TBL] [Abstract][Full Text] [Related]
5. Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. Liu YY; Xu JH; Wu HY; Shen D J Biotechnol; 2004 May; 110(2):209-17. PubMed ID: 15121339 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa. Tenkanen M; Kontkanen H; Isoniemi R; Spetz P; Holmbom B Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):120-7. PubMed ID: 12382052 [TBL] [Abstract][Full Text] [Related]
7. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives. Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337 [TBL] [Abstract][Full Text] [Related]
8. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes. Pernas MA; López C; Rúa ML; Hermoso J FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462 [TBL] [Abstract][Full Text] [Related]
9. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions. Trubiano G; Borio D; Ferreira ML Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295 [TBL] [Abstract][Full Text] [Related]
10. Understanding Candida rugosa lipases: an overview. Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844 [TBL] [Abstract][Full Text] [Related]
11. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Shah S; Gupta MN Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018 [TBL] [Abstract][Full Text] [Related]
12. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study. James JJ; Lakshmi BS; Seshasayee AS; Gautam P FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226 [TBL] [Abstract][Full Text] [Related]
13. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082 [TBL] [Abstract][Full Text] [Related]
14. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase. Takaç S; Unlü AE Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575 [TBL] [Abstract][Full Text] [Related]
15. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. Pernas MA; López C; Pastrana L; Rúa ML J Biotechnol; 2001 Nov; 84(2):163-74. PubMed ID: 11090688 [TBL] [Abstract][Full Text] [Related]
17. Analysis of conformational states of Candida rugosa lipase in solution: implications for mechanism of interfacial activation and separation of open and closed forms. Turner NA; Needs EC; Khan JA; Vulfson EN Biotechnol Bioeng; 2001 Jan; 72(1):108-18. PubMed ID: 11084600 [TBL] [Abstract][Full Text] [Related]
18. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents. Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester. Zhu S; Wu Y; Yu Z J Biotechnol; 2005 Apr; 116(4):397-401. PubMed ID: 15748766 [TBL] [Abstract][Full Text] [Related]
20. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]