These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 12362983)

  • 1. Additional copies of the NOG2 and IST2 genes suppress the deficiency of cohesin Irr1p/Scc3p in Saccharomyces cerevisiae.
    Białkowska A; Kurlandzka A
    Acta Biochim Pol; 2002; 49(2):421-5. PubMed ID: 12362983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The F658G substitution in Saccharomyces cerevisiae cohesin Irr1/Scc3 is semi-dominant in the diploid and disturbs mitosis, meiosis and the cell cycle.
    Cena A; Kozłowska E; Płochocka D; Grynberg M; Ishikawa T; Fronk J; Kurlandzka A
    Eur J Cell Biol; 2008 Oct; 87(10):831-44. PubMed ID: 18617290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cohesin Irr1/Scc3 is likely to influence transcription in Saccharomyces cerevisiae via interaction with Mediator complex.
    Cena A; Skoneczny M; Chełstowska A; Kowalec P; Natorff R; Kurlandzka A
    Acta Biochim Pol; 2013; 60(2):233-8. PubMed ID: 23730682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins interacting with Lin 1p, a putative link between chromosome segregation, mRNA splicing and DNA replication in Saccharomyces cerevisiae.
    Bialkowska A; Kurlandzka A
    Yeast; 2002 Nov; 19(15):1323-33. PubMed ID: 12402242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution F659G in the Irr1p/Scc3p cohesin influences the cell wall of Saccharomyces cerevisiae.
    Cena A; Orlowski J; Machula K; Fronk J; Kurlandzka A
    Cell Struct Funct; 2007; 32(1):1-7. PubMed ID: 17229992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae IRR1 protein is indirectly involved in colony formation.
    Kurlandzka A; Rytka J; Rózalska B; Wysocka M
    Yeast; 1999 Jan; 15(1):23-33. PubMed ID: 10028182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion.
    Rolef Ben-Shahar T; Heeger S; Lehane C; East P; Flynn H; Skehel M; Uhlmann F
    Science; 2008 Jul; 321(5888):563-6. PubMed ID: 18653893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle.
    Borges V; Lehane C; Lopez-Serra L; Flynn H; Skehel M; Rolef Ben-Shahar T; Uhlmann F
    Mol Cell; 2010 Sep; 39(5):677-88. PubMed ID: 20832720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensin is required for chromosome arm cohesion during mitosis.
    Lam WW; Peterson EA; Yeung M; Lavoie BD
    Genes Dev; 2006 Nov; 20(21):2973-84. PubMed ID: 17079686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis.
    Klein F; Mahr P; Galova M; Buonomo SB; Michaelis C; Nairz K; Nasmyth K
    Cell; 1999 Jul; 98(1):91-103. PubMed ID: 10412984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae.
    Shimada K; Gasser SM
    Cell; 2007 Jan; 128(1):85-99. PubMed ID: 17218257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single-copy suppressor of the Saccharomyces cerevisae late-mitotic mutants cdc15 and dbf2 is encoded by the Candida albicans CDC14 gene.
    Jiménez J; Cid VJ; Nombela C; Sánchez M
    Yeast; 2001 Jun; 18(9):849-58. PubMed ID: 11427967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular determinant for the establishment of sister chromatid cohesion.
    Unal E; Heidinger-Pauli JM; Kim W; Guacci V; Onn I; Gygi SP; Koshland DE
    Science; 2008 Jul; 321(5888):566-9. PubMed ID: 18653894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation.
    Tanaka T; Fuchs J; Loidl J; Nasmyth K
    Nat Cell Biol; 2000 Aug; 2(8):492-9. PubMed ID: 10934469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork.
    Lengronne A; McIntyre J; Katou Y; Kanoh Y; Hopfner KP; Shirahige K; Uhlmann F
    Mol Cell; 2006 Sep; 23(6):787-99. PubMed ID: 16962805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting.
    Ocampo-Hafalla MT; Katou Y; Shirahige K; Uhlmann F
    Chromosoma; 2007 Dec; 116(6):531-44. PubMed ID: 17763979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressor analysis of a histone defect identifies a new function for the hda1 complex in chromosome segregation.
    Kanta H; Laprade L; Almutairi A; Pinto I
    Genetics; 2006 May; 173(1):435-50. PubMed ID: 16415367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postreplicative formation of cohesion is required for repair and induced by a single DNA break.
    Ström L; Karlsson C; Lindroos HB; Wedahl S; Katou Y; Shirahige K; Sjögren C
    Science; 2007 Jul; 317(5835):242-5. PubMed ID: 17626884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7).
    Unal E; Heidinger-Pauli JM; Koshland D
    Science; 2007 Jul; 317(5835):245-8. PubMed ID: 17626885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.