BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12363006)

  • 1. Inactivation of the acrA gene is partially responsible for chloramphenicol sensitivity of Escherichia coli CM2555 strain expressing the chloramphenicol acetyltransferase gene.
    Potrykus J; Barańska S; Wegrzyn G
    Microb Drug Resist; 2002; 8(3):179-85. PubMed ID: 12363006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Arch Microbiol; 2003 Nov; 180(5):362-6. PubMed ID: 14614545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3610-2. PubMed ID: 11709351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli.
    Ma D; Cook DN; Alberti M; Pon NG; Nikaido H; Hearst JE
    J Bacteriol; 1993 Oct; 175(19):6299-313. PubMed ID: 8407802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variations in the active efflux pump genes acrA/B and tolC in different drug-induced strains of Escherichia coli CVCC 1547.
    Liu JH; Pan YS; Yuan L; Wu H; Hu GZ; Chen YX
    Genet Mol Res; 2013 Aug; 12(3):2829-36. PubMed ID: 24065639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The low level expression of chloramphenicol acetyltransferase (CAT) mRNA in Escherichia coli is not dependent on either Shine-Dalgarno or the downstream boxes in the CAT gene.
    Odjakova M; Golshani A; Ivanov G; Abou Haidar M; Ivanov I
    Microbiol Res; 1998 Aug; 153(2):173-8. PubMed ID: 9760750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression of high-level cephalosporinase due to mutation in the AmpC attenuator of a clinical Escherichia coli strain].
    Guan XZ; Liu YN; Luo YP; She DY; Lu SJ; Zhou G; Chen LA
    Zhonghua Yi Xue Za Zhi; 2006 Mar; 86(9):600-4. PubMed ID: 16681904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
    Wang J; Liu JH
    FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli.
    Gerken H; Misra R
    Mol Microbiol; 2004 Nov; 54(3):620-31. PubMed ID: 15491355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element.
    Kobayashi K; Tsukagoshi N; Aono R
    J Bacteriol; 2001 Apr; 183(8):2646-53. PubMed ID: 11274125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-antibiotic resistance-independent active chloramphenicol efflux in an Escherichia coli clinical isolate.
    Bellaaj A; Mallea M; Bollet C; Belhadj C; Belhadj O; Ben-Mahrez K
    Drugs Exp Clin Res; 2002; 28(2-3):99-104. PubMed ID: 12224384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3' terminal codon pairs with different frequency of occurrence on the expression of cat gene in Escherichia coli.
    Boycheva SS; Bachvarov BI; Berzal-Heranz A; Ivanov IG
    Curr Microbiol; 2004 Feb; 48(2):97-101. PubMed ID: 15057475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.
    Wu CJ; Janssen GR
    J Bacteriol; 1997 Nov; 179(21):6824-30. PubMed ID: 9352935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis and topology of integral membrane proteins: characterization of lactose permease-chloramphenicol acetyltransferase hybrids.
    Zelazny A; Bibi E
    Biochemistry; 1996 Aug; 35(33):10872-8. PubMed ID: 8718879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a functional variant of chloramphenicol acetyltransferase in Haemophilus influenzae.
    Smith MD; Kelsey MC
    J Med Microbiol; 1989 Aug; 29(4):263-8. PubMed ID: 2668528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization of type I chloramphenicol acetyltransferase: an approach based on the concept of ionic strength reducers.
    Andreeva AE; Borissova BE; Mironova R; Glykos NM; Kotsifaki D; Ivanov I; Krysteva M; Kokkinidis M
    Acta Crystallogr D Biol Crystallogr; 2000 Jan; 56(Pt 1):101-3. PubMed ID: 10666642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of efflux, impermeability, and AmpC activity contributes to cefuroxime resistance in clinical, non-ESBL-producing isolates of Escherichia coli.
    Källman O; Giske CG; Samuelsen Ø; Wretlind B; Kalin M; Olsson-Liljequist B
    Microb Drug Resist; 2009 Jun; 15(2):91-5. PubMed ID: 19432520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system.
    Price GP; St John AC
    FEMS Microbiol Lett; 2000 Dec; 193(1):51-6. PubMed ID: 11094278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1987; 52(1):59-70. PubMed ID: 3036659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloromycetin resistance of clinically isolated E coli is conversed by using EGS technique to repress the chloromycetin acetyl transferase.
    Gao MY; Xu CR; Chen R; Liu SG; Feng JN
    World J Gastroenterol; 2005 Dec; 11(46):7368-73. PubMed ID: 16437645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.