These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12363286)

  • 1. Calcium regulation and muscle disease.
    Gommans IM; Vlak MH; de Haan A; van Engelen BG
    J Muscle Res Cell Motil; 2002; 23(1):59-63. PubMed ID: 12363286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.
    Froemming GR; Ohlendieck K
    Front Biosci; 2001 Jan; 6():D65-74. PubMed ID: 11145921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation-contraction-relaxation cycle: role of Ca2+-regulatory membrane proteins in normal, stimulated and pathological skeletal muscle (review).
    Murray BE; Froemming GR; Maguire PB; Ohlendieck K
    Int J Mol Med; 1998 Apr; 1(4):677-87. PubMed ID: 9852282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From excitation to intracellular Ca
    Allard B
    Neuromuscul Disord; 2018 May; 28(5):394-401. PubMed ID: 29627324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-Contraction Coupling Alterations in Myopathies.
    Marty I; Fauré J
    J Neuromuscul Dis; 2016 Nov; 3(4):443-453. PubMed ID: 27911331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects on Ca2+ handling caused by malignant hyperthermia and central core disease mutations in RyR1.
    Dirksen RT; Avila G
    Biophys J; 2004 Nov; 87(5):3193-204. PubMed ID: 15347586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomerisation of Ca2+-regulatory membrane components involved in the excitation-contraction-relaxation cycle during postnatal development of rabbit skeletal muscle.
    Froemming GR; Ohlendieck K
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):226-38. PubMed ID: 9748594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca
    Treves S; Jungbluth H; Voermans N; Muntoni F; Zorzato F
    Semin Cell Dev Biol; 2017 Apr; 64():201-212. PubMed ID: 27427513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region.
    Murayama T; Kurebayashi N; Yamazawa T; Oyamada H; Suzuki J; Kanemaru K; Oguchi K; Iino M; Sakurai T
    PLoS One; 2015; 10(6):e0130606. PubMed ID: 26115329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcoplasmic reticulum: the dynamic calcium governor of muscle.
    Rossi AE; Dirksen RT
    Muscle Nerve; 2006 Jun; 33(6):715-31. PubMed ID: 16477617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transport across the sarcoplasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine receptor.
    Stokes DL; Wagenknecht T
    Eur J Biochem; 2000 Sep; 267(17):5274-9. PubMed ID: 10951184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Ca2+ dynamics in malignant hyperthermia and central core disease: established concepts, new cellular mechanisms involved.
    Avila G
    Cell Calcium; 2005 Feb; 37(2):121-7. PubMed ID: 15589992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the ryanodine receptor calcium release channel of the sarcoplasmic reticulum in skeletal muscle.
    Csernoch L
    Acta Physiol Hung; 1999; 86(2):77-97. PubMed ID: 10741867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium regulation by skeletal muscle membranes of horses with recurrent exertional rhabdomyolysis.
    Ward TL; Valberg SJ; Gallant EM; Mickelson JR
    Am J Vet Res; 2000 Mar; 61(3):242-7. PubMed ID: 10714513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease.
    Lyfenko AD; Goonasekera SA; Dirksen RT
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1256-66. PubMed ID: 15336973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel.
    Murayama T; Kurebayashi N; Ogawa H; Yamazawa T; Oyamada H; Suzuki J; Kanemaru K; Oguchi K; Iino M; Sakurai T
    Hum Mutat; 2016 Nov; 37(11):1231-1241. PubMed ID: 27586648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.