These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 12363316)
1. Pyrene bioavailability; effect of sediment-chemical contact time on routes of uptake in an oligochaete worm. Conrad AU; Comber SD; Simkiss K Chemosphere; 2002 Nov; 49(5):447-54. PubMed ID: 12363316 [TBL] [Abstract][Full Text] [Related]
2. Examining the role of temperature and sediment-chemical contact time on desorption and bioavailability of sediment-associated tetrabromo diphenyl ether and benzo(a)pyrene. Sormunen AJ; Leppänen MT; Kukkonen JV Ecotoxicol Environ Saf; 2009 May; 72(4):1234-41. PubMed ID: 18973943 [TBL] [Abstract][Full Text] [Related]
3. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part I: Relative importance of water and sediment as exposure routes. Ramskov T; Thit A; Croteau MN; Selck H Aquat Toxicol; 2015 Jul; 164():81-91. PubMed ID: 25935103 [TBL] [Abstract][Full Text] [Related]
4. Bioavailability and assimilation of sediment-associated benzo[a]pyrene by Ilyodrilus templetoni (Oligochaeta). Lu X; Reible DD; Fleeger JW Environ Toxicol Chem; 2004 Jan; 23(1):57-64. PubMed ID: 14768867 [TBL] [Abstract][Full Text] [Related]
5. Chemical and biological availability of sediment-sorbed benzo[a]pyrene and hexachlorobiphenyl. Schuler LJ; Lydy MJ Environ Toxicol Chem; 2001 Sep; 20(9):2014-20. PubMed ID: 11521829 [TBL] [Abstract][Full Text] [Related]
6. Effect of sediment-chemical contact time on availability of sediment-associated pyrene and benzo. Leppänen MT; Kukkonen JV Aquat Toxicol; 2000 Jul; 49(4):227-241. PubMed ID: 10854668 [TBL] [Abstract][Full Text] [Related]
7. Relative importance of ingested sediment versus pore water as uptake routes for PAHs to the deposit-feeding oligochaete Ilyodrilus templetoni. Lu X; Reible DD; Fleeger JW Arch Environ Contam Toxicol; 2004 Aug; 47(2):207-14. PubMed ID: 15386146 [TBL] [Abstract][Full Text] [Related]
8. Investigating arsenic bioavailability and bioaccumulation by the freshwater oligochaete Lumbriculus variegatus. Nasi M; Piol MN; Di Risio C; Guerrero NR Arch Environ Contam Toxicol; 2011 Oct; 61(3):426-34. PubMed ID: 21286699 [TBL] [Abstract][Full Text] [Related]
9. Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Sormunen AJ; Leppänen MT; Kukkonen JV Environ Toxicol Chem; 2008 Apr; 27(4):854-63. PubMed ID: 18333684 [TBL] [Abstract][Full Text] [Related]
10. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. You J; Landrum PF; Lydy MJ Environ Sci Technol; 2006 Oct; 40(20):6348-53. PubMed ID: 17120564 [TBL] [Abstract][Full Text] [Related]
11. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure. Thit A; Ramskov T; Croteau MN; Selck H Aquat Toxicol; 2016 Nov; 180():25-35. PubMed ID: 27640154 [TBL] [Abstract][Full Text] [Related]
12. The contrasting roles of sedimentary plant-derived carbon and black carbon on sediment-spiked hydrophobic organic contaminant bioavailability to Diporeia species and Lumbriculus variegatus. Kukkonen JV; Mitra S; Landrum PF; Gossiaux DC; Gunnarsson J; Weston D Environ Toxicol Chem; 2005 Apr; 24(4):877-85. PubMed ID: 15839562 [TBL] [Abstract][Full Text] [Related]
13. Bioavailability of sediment-associated benzo(a)pyrene within single- versus multiple-species systems. Schuler LJ; Heagler MG; Lydy MJ Arch Environ Contam Toxicol; 2002 Feb; 42(2):199-204. PubMed ID: 11815811 [TBL] [Abstract][Full Text] [Related]
14. Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Pehkonen S; You J; Akkanen J; Kukkonen JV; Lydy MJ Environ Toxicol Chem; 2010 Sep; 29(9):1976-83. PubMed ID: 20821655 [TBL] [Abstract][Full Text] [Related]
15. Predicting the bioavailability of sediment-associated spiked compounds by using the polyoxymethylene passive sampling and tenax extraction methods in sediments from three river basins in Europe. Sormunen AJ; Tuikka AI; Akkanen J; Leppänen MT; Kukkonen JV Arch Environ Contam Toxicol; 2010 Jul; 59(1):80-90. PubMed ID: 20058002 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus. Zhang B; Li H; Wei Y; You J Environ Toxicol Chem; 2013 Dec; 32(12):2711-8. PubMed ID: 24038512 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Hyötyläinen T; Oikari A Chemosphere; 2004 Oct; 57(2):159-64. PubMed ID: 15294439 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Leppänen MT; Kukkonen JV Environ Pollut; 2006 Mar; 140(1):150-63. PubMed ID: 16144733 [TBL] [Abstract][Full Text] [Related]
19. Uptake and accumulation of sediment-associated 4-nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete). Croce V; De Angelis S; Patrolecco L; Polesello S; Valsecchi S Environ Toxicol Chem; 2005 May; 24(5):1165-71. PubMed ID: 16110996 [TBL] [Abstract][Full Text] [Related]
20. Toxicokinetics, toxicity and lethal body residues of two chlorophenols in the oligochaete worm, Lumbriculus variegatus, in different sediments. Nikkilä A; Halme A; Kukkonen JV Chemosphere; 2003 Apr; 51(1):35-46. PubMed ID: 12586154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]