These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 12363358)

  • 1. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal operation of high-pressure homogenization for intracellular product recovery.
    Kelly WJ; Muske KR
    Bioprocess Biosyst Eng; 2004 Dec; 27(1):25-37. PubMed ID: 15480808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaulin homogenization: a mechanistic study.
    Lander R; Manger W; Scouloudis M; Ku A; Davis C; Lee A
    Biotechnol Prog; 2000; 16(1):80-5. PubMed ID: 10662494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderate temperatures affect Escherichia coli inactivation by high-pressure homogenization only through fluid viscosity.
    Diels AM; Callewaert L; Wuytack EY; Masschalck B; Michiels CW
    Biotechnol Prog; 2004; 20(5):1512-7. PubMed ID: 15458337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using computational fluid dynamics software to estimate circulation time distributions in bioreactors.
    Davidson KM; Sushil S; Eggleton CD; Marten MR
    Biotechnol Prog; 2003; 19(5):1480-6. PubMed ID: 14524709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra scale-down studies of the effect of flow and impact conditions during E. coli cell processing.
    Chan G; Booth AJ; Mannweiler K; Hoare M
    Biotechnol Bioeng; 2006 Nov; 95(4):671-83. PubMed ID: 16804948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation.
    Gao Y; Haapasalo M; Shen Y; Wu H; Li B; Ruse ND; Zhou X
    J Endod; 2009 Sep; 35(9):1282-7. PubMed ID: 19720232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.
    Wu B
    Environ Sci Technol; 2010 Dec; 44(23):8989-95. PubMed ID: 21047058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of E. Coli bacteria in mini-channel flow.
    Mayeed MS; Mian A; Auner GW; Newaz GM
    J Biomech Eng; 2006 Jun; 128(3):458-61. PubMed ID: 16706596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics.
    Wurm M; Zeng AP
    Lab Chip; 2012 Mar; 12(6):1071-7. PubMed ID: 22311121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of the fluid dynamics in the flow-through cell.
    Kakhi M
    Int J Pharm; 2009 Jul; 376(1-2):22-40. PubMed ID: 19375490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces.
    Ma N; Koelling KW; Chalmers JJ
    Biotechnol Bioeng; 2002 Nov; 80(4):428-37. PubMed ID: 12325151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a contraction flow field on hydrodynamic damage to entomopathogenic nematodes-A biological pest control agent.
    Fife JP; Derksen RC; Ozkan HE; Grewal PS; Chalmers JJ; Krause CR
    Biotechnol Bioeng; 2004 Apr; 86(1):96-107. PubMed ID: 15007846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced uptake of dissolved oxygen and glucose by Escherichia coli in a turbulent flow.
    Al-Homoud A; Hondzo M
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):643-55. PubMed ID: 18463864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.