These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 12363359)
1. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data. Yeow YL; Wickramasinghe SR; Leong YK; Han B Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359 [TBL] [Abstract][Full Text] [Related]
2. Obtaining the shear stress versus shear rate relationship and yield stress of blood from capillary viscometry data by Tikhonov regularization. Yeow YL; Leong YK; Wickramasinghe SR; Han B Biotechnol Prog; 2002; 18(4):879-84. PubMed ID: 12153325 [TBL] [Abstract][Full Text] [Related]
3. Blood rheological characterization using the thickness-shear mode resonator. Bandey HL; Cernosek RW; Lee WE; Ondrovic LE Biosens Bioelectron; 2004 Jul; 19(12):1657-65. PubMed ID: 15142600 [TBL] [Abstract][Full Text] [Related]
5. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529 [TBL] [Abstract][Full Text] [Related]
6. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine. Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603 [TBL] [Abstract][Full Text] [Related]
7. The superposition of steady on oscillatory shear and its effect on the viscoelasticity of human blood and a blood-like model fluid. Vlastos G; Lerche D; Koch B Biorheology; 1997; 34(1):19-36. PubMed ID: 9176588 [TBL] [Abstract][Full Text] [Related]
8. Oscillating viscometer--evaluation of a new bedside test. Mark M; Häusler K; Dual J; Reinhart WH Biorheology; 2006; 43(2):133-46. PubMed ID: 16687783 [TBL] [Abstract][Full Text] [Related]
9. Studies of electrorheological properties of blood. Antonova N; Riha P Clin Hemorheol Microcirc; 2006; 35(1-2):19-29. PubMed ID: 16899902 [TBL] [Abstract][Full Text] [Related]
10. Comparison of blood viscosity using a torsional oscillation viscometer and a rheometer. Travagli V; Zanardi I; Boschi L; Gabbrielli A; Mastronuzzi VA; Cappelli R; Forconi S Clin Hemorheol Microcirc; 2008; 38(2):65-74. PubMed ID: 18198407 [TBL] [Abstract][Full Text] [Related]
11. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Johnston BM; Johnston PR; Corney S; Kilpatrick D J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000 [TBL] [Abstract][Full Text] [Related]
12. Blood fluidity and thermography in patients with diabetes mellitus and coronary artery disease in comparison to healthy subjects. Marcinkowska-Gapińska A; Kowal P Clin Hemorheol Microcirc; 2006; 35(4):473-9. PubMed ID: 17148846 [TBL] [Abstract][Full Text] [Related]
13. On the effect of microstructural changes of blood on energy dissipation in Couette flow. Kaliviotis E; Yianneskis M Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131 [TBL] [Abstract][Full Text] [Related]
14. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
15. [Threshold of shear stress in human blood for healthy and sick subjects]. Picart C; Piau JM; Galliard H; Carpentier PH J Mal Vasc; 1998 Apr; 23(2):113-8. PubMed ID: 9608924 [TBL] [Abstract][Full Text] [Related]
16. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947 [TBL] [Abstract][Full Text] [Related]
17. Measurement of blood viscosity using a pressure-scanning capillary viscometer. Shin S; Ku Y; Park MS; Suh JS Clin Hemorheol Microcirc; 2004; 30(3-4):467-70. PubMed ID: 15258389 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Cokelet GR; Brown JR; Codd SL; Seymour JD Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468 [TBL] [Abstract][Full Text] [Related]
19. Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach. Ohta M; Wetzel SG; Dantan P; Bachelet C; Lovblad KO; Yilmaz H; Flaud P; Rüfenacht DA Cardiovasc Intervent Radiol; 2005; 28(6):768-72. PubMed ID: 16184328 [TBL] [Abstract][Full Text] [Related]
20. A new simple cone-plate viscometer for hemorheology. Wang X; Liao FL; Stoltz JF Clin Hemorheol Microcirc; 1998 Sep; 19(1):25-31. PubMed ID: 9806730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]