These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12363359)

  • 21. Distributions of wall shear stress in venular convergences of mouse cremaster muscle.
    Kim MB; Sarelius IH
    Microcirculation; 2003 Apr; 10(2):167-78. PubMed ID: 12700585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemorheological changes and characteristic parameters derived from whole blood viscometry in chronic heroin addicts.
    Antonova N; Zvetkova E; Ivanov I; Savov Y
    Clin Hemorheol Microcirc; 2008; 39(1-4):53-61. PubMed ID: 18503110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Presentation of a clinical hemoviscosimeter].
    Lelièvre JC; Delgallo H; Lacombe C; Bucherer C
    J Mal Vasc; 1993; 18(2):153-6. PubMed ID: 8350018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress.
    Lee BK; Alexy T; Wenby RB; Meiselman HJ
    Biorheology; 2007; 44(1):29-35. PubMed ID: 17502687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.
    Leslie LJ; Marshall LJ; Devitt A; Hilton A; Tansley GD
    Artif Organs; 2013 Mar; 37(3):267-75. PubMed ID: 23356400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-phase CFD analytical modeling of blood flow.
    Jung J; Hassanein A
    Med Eng Phys; 2008 Jan; 30(1):91-103. PubMed ID: 17244522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erythrocyte transport efficacy of human blood: a rheological point of view.
    Bogar L; Juricskay I; Kesmarky G; Kenyeres P; Toth K
    Eur J Clin Invest; 2005 Nov; 35(11):687-90. PubMed ID: 16269018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An energy-rate based blood viscosity model incorporating aggregate network dynamics.
    Kaliviotis E; Yianneskis M
    Biorheology; 2009; 46(6):487-508. PubMed ID: 20164632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a torsional-vibrating technique for the hemorheological characterization.
    Travagli V; Zanardi I; Boschi L; Turchetti V; Forconi S
    Clin Hemorheol Microcirc; 2006; 35(1-2):283-9. PubMed ID: 16899944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Blood viscosity: an original method for the study of low values of the shear rate].
    Bernasconi C; Agostoni A
    Ric Clin Lab; 1985; 15 Suppl 1():11-25. PubMed ID: 4035209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of whole blood viscosity profiles via an automated viscometer: technical details and clinical relevance.
    Alexy T; Pais E; Wenby RB; Hogenauer W; Toth K; Meiselman HJ; Kensey KR
    Clin Lab; 2005; 51(9-10):523-9. PubMed ID: 16285475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear-dependency of the predicted ideal hematocrit.
    Varlet-Marie E; Vachoud L; Marion B; Roques C; Fidani T; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2019; 71(4):379-385. PubMed ID: 31006675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparison of whole blood viscosity in vascular diseases].
    Kowal P; Marcinkowska-Gapinska A; Elikowski W; Chałupka Z
    Pol Merkur Lekarski; 2003 Dec; 15(90):515-7. PubMed ID: 15058250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors.
    Wang X; Li X
    Comput Biol Med; 2011 Sep; 41(9):812-21. PubMed ID: 21757193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulsatile flow in a coronary artery using multiphase kinetic theory.
    Huang J; Lyczkowski RW; Gidaspow D
    J Biomech; 2009 Apr; 42(6):743-54. PubMed ID: 19278682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Increase of erythrocyte disaggregation shear rate in arterial hypertension].
    Razavian SM; Del-Pino M; Chabanel A; Simon A; Levenson J
    Arch Mal Coeur Vaiss; 1991 Aug; 84(8):1081-3. PubMed ID: 1953253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.