BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12364519)

  • 1. Orientation selectivity is reduced by monocular deprivation in combination with PKA inhibitors.
    Beaver CJ; Fischer QS; Ji Q; Daw NW
    J Neurophysiol; 2002 Oct; 88(4):1933-40. PubMed ID: 12364519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture.
    Watkins DW; Wilson JR; Sherman SM
    J Neurophysiol; 1978 Mar; 41(2):322-37. PubMed ID: 650270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical period for monocular deprivation in the cat visual cortex.
    Daw NW; Fox K; Sato H; Czepita D
    J Neurophysiol; 1992 Jan; 67(1):197-202. PubMed ID: 1552319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of protein kinase A and protein kinase G in synaptic plasticity in the visual cortex.
    Liu S; Rao Y; Daw N
    Cereb Cortex; 2003 Aug; 13(8):864-9. PubMed ID: 12853373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binocular deprivation can erase the effects of preceding monocular or binocular vision in kitten cortex.
    Rauschecker JP; Singer W
    Brain Res; 1982 Aug; 256(4):495-8. PubMed ID: 7127157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different forms of monocular deprivation on primary visual cortex maps.
    Jaffer S; Vorobyov V; Sengpiel F
    Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    Neuron; 1997 Aug; 19(2):307-18. PubMed ID: 9292721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly deprived cats.
    Yinon U; Podell M
    Brain Res; 1987 Jun; 430(2):205-13. PubMed ID: 3607513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.