These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12364530)

  • 1. Localizing visual discrimination processes in time and space.
    Hopf JM; Vogel E; Woodman G; Heinze HJ; Luck SJ
    J Neurophysiol; 2002 Oct; 88(4):2088-95. PubMed ID: 12364530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural sources of focused attention in visual search.
    Hopf JM; Luck SJ; Girelli M; Hagner T; Mangun GR; Scheich H; Heinze HJ
    Cereb Cortex; 2000 Dec; 10(12):1233-41. PubMed ID: 11073872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming.
    Henson RN; Rylands A; Ross E; Vuilleumeir P; Rugg MD
    Neuroimage; 2004 Apr; 21(4):1674-89. PubMed ID: 15050590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M; Ferrari V; Junghöfer M; Schupp HT
    Neuroimage; 2006 Aug; 32(2):583-91. PubMed ID: 16750397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related occipito-temporal hypoactivation during visual search: relationships between mN2pc sources and performance.
    Lorenzo-López L; Gutiérrez R; Moratti S; Maestú F; Cadaveira F; Amenedo E
    Neuropsychologia; 2011 Apr; 49(5):858-865. PubMed ID: 21237184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological correlates of lateral interactions in human visual cortex.
    Khoe W; Freeman E; Woldorff MG; Mangun GR
    Vision Res; 2004; 44(14):1659-73. PubMed ID: 15136002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form-from-motion: MEG evidence for time course and processing sequence.
    Schoenfeld MA; Woldorff M; Düzel E; Scheich H; Heinze HJ; Mangun GR
    J Cogn Neurosci; 2003 Feb; 15(2):157-72. PubMed ID: 12676054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention to detail: why considering task demands is essential for single-trial analysis of BOLD correlates of the visual P1 and N1.
    Warbrick T; Arrubla J; Boers F; Neuner I; Shah NJ
    J Cogn Neurosci; 2014 Mar; 26(3):529-42. PubMed ID: 24047390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired engagement of the ventral attentional pathway in ADHD.
    Helenius P; Laasonen M; Hokkanen L; Paetau R; Niemivirta M
    Neuropsychologia; 2011 Jun; 49(7):1889-96. PubMed ID: 21419791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rapid Capture of Attention by Rewarded Objects.
    Donohue SE; Hopf JM; Bartsch MV; Schoenfeld MA; Heinze HJ; Woldorff MG
    J Cogn Neurosci; 2016 Apr; 28(4):529-41. PubMed ID: 26741800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity and generalization of visual perceptual learning in humans: an event-related potential study.
    Ding Y; Song Y; Fan S; Qu Z; Chen L
    Neuroreport; 2003 Mar; 14(4):587-90. PubMed ID: 12657891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal modulation of visual processing in humans.
    Barceló F; Suwazono S; Knight RT
    Nat Neurosci; 2000 Apr; 3(4):399-403. PubMed ID: 10725931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics.
    Ronconi L; Bertoni S; Bellacosa Marotti R
    Cortex; 2016 Jun; 79():87-98. PubMed ID: 27088616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rapid extraction of gist-early neural correlates of high-level visual processing.
    Oppermann F; Hassler U; Jescheniak JD; Gruber T
    J Cogn Neurosci; 2012 Feb; 24(2):521-9. PubMed ID: 21812567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face repetition effects in direct and indirect tasks: an event-related brain potentials study.
    Trenner MU; Schweinberger SR; Jentzsch I; Sommer W
    Brain Res Cogn Brain Res; 2004 Nov; 21(3):388-400. PubMed ID: 15511654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Visual information processing and the mechanism of vision. Clinical application].
    Oguchi Y
    Nippon Ganka Gakkai Zasshi; 1998 Dec; 102(12):850-75. PubMed ID: 10025116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.