These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12364539)

  • 21. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development.
    Tavazoie SF; Reid RC
    Nat Neurosci; 2000 Jun; 3(6):608-16. PubMed ID: 10816318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On and off domains of geniculate afferents in cat primary visual cortex.
    Jin JZ; Weng C; Yeh CI; Gordon JA; Ruthazer ES; Stryker MP; Swadlow HA; Alonso JM
    Nat Neurosci; 2008 Jan; 11(1):88-94. PubMed ID: 18084287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The coordinated mapping of visual space and response features in visual cortex.
    Yu H; Farley BJ; Jin DZ; Sur M
    Neuron; 2005 Jul; 47(2):267-80. PubMed ID: 16039568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex.
    Smith GB; Whitney DE; Fitzpatrick D
    Neuron; 2015 Nov; 88(4):805-18. PubMed ID: 26590348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Receptive Field Tiling in Primate V1.
    Nauhaus I; Nielsen KJ; Callaway EM
    Neuron; 2016 Aug; 91(4):893-904. PubMed ID: 27499086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometrical and topological relationships between multiple functional maps in cat primary visual cortex.
    Kim DS; Matsuda Y; Ohki K; Ajima A; Tanaka S
    Neuroreport; 1999 Aug; 10(12):2515-22. PubMed ID: 10574362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.
    DeBruyn EJ; Casagrande VA; Beck PD; Bonds AB
    J Neurophysiol; 1993 Jan; 69(1):3-18. PubMed ID: 8381862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets.
    Rao SC; Toth LJ; Sur M
    J Comp Neurol; 1997 Oct; 387(3):358-70. PubMed ID: 9335420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis.
    Wimbauer S; Wenisch OG; van Hemmen JL; Miller KD
    Biol Cybern; 1997 Dec; 77(6):463-77. PubMed ID: 9433757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional organization of owl monkey lateral geniculate nucleus and visual cortex.
    O'Keefe LP; Levitt JB; Kiper DC; Shapley RM; Movshon JA
    J Neurophysiol; 1998 Aug; 80(2):594-609. PubMed ID: 9705453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Link between orientation and retinotopic maps in primary visual cortex.
    Paik SB; Ringach DL
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7091-6. PubMed ID: 22509015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual experience before eye-opening and the development of the retinogeniculate pathway.
    Akerman CJ; Smyth D; Thompson ID
    Neuron; 2002 Dec; 36(5):869-79. PubMed ID: 12467590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alteration of visual input results in a coordinated reorganization of multiple visual cortex maps.
    Farley BJ; Yu H; Jin DZ; Sur M
    J Neurosci; 2007 Sep; 27(38):10299-310. PubMed ID: 17881536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maps of central visual space in ferret V1 and V2 lack matching inputs from the two eyes.
    White LE; Bosking WH; Williams SM; Fitzpatrick D
    J Neurosci; 1999 Aug; 19(16):7089-99. PubMed ID: 10436063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On and off sublaminae in the lateral geniculate nucleus of the ferret.
    Stryker MP; Zahs KR
    J Neurosci; 1983 Oct; 3(10):1943-51. PubMed ID: 6619918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of orientation and ocular dominance patterns in the visual cortex of cats and ferrets.
    Müller T; Stetter M; Hübener M; Sengpiel F; Bonhoeffer T; Gödecke I; Chapman B; Löwel S; Obermayer K
    Neural Comput; 2000 Nov; 12(11):2573-95. PubMed ID: 11110128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The projection of the visual field onto the lateral geniculate nucleus of the ferret.
    Zahs KR; Stryker MP
    J Comp Neurol; 1985 Nov; 241(2):210-24. PubMed ID: 4067015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organization of primary visual cortex (area 17) in the ferret.
    Law MI; Zahs KR; Stryker MP
    J Comp Neurol; 1988 Dec; 278(2):157-80. PubMed ID: 3068264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.