These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12364609)

  • 1. Artificial neural network prediction of antisense oligodeoxynucleotide activity.
    Giddings MC; Shah AA; Freier S; Atkins JF; Gesteland RF; Matveeva OV
    Nucleic Acids Res; 2002 Oct; 30(19):4295-304. PubMed ID: 12364609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized design of antisense oligomers for targeted rRNA depletion.
    Phelps WA; Carlson AE; Lee MT
    Nucleic Acids Res; 2021 Jan; 49(1):e5. PubMed ID: 33221877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudo-cyclic oligonucleotides: in vitro and in vivo properties.
    Jiang Z; Kandimalla ER; Zhao Q; Shen LX; DeLuca A; Normano N; Ruskowski M; Agrawal S
    Bioorg Med Chem; 1999 Dec; 7(12):2727-35. PubMed ID: 10658577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts.
    Scherr M; Rossi JJ
    Nucleic Acids Res; 1998 Nov; 26(22):5079-85. PubMed ID: 9801303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational antisense oligo prediction with a neural network model.
    Chalk AM; Sonnhammer EL
    Bioinformatics; 2002 Dec; 18(12):1567-75. PubMed ID: 12490440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a bispecific antisense oligonucleotide containing multiple binding sites for the treatment of hormone insensitive prostate tumors.
    Rubenstein M; Tsui P; Guinan P
    Med Hypotheses; 2005; 65(5):905-7. PubMed ID: 16023790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bispecific antisense oligonucleotides have activity comparable to monospecifics in inhibiting expression of BCL-2 in LNCaP cells.
    Rubenstein M; Guinan P
    In Vivo; 2010; 24(4):489-93. PubMed ID: 20668314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation.
    Shao Y; Wu Y; Chan CY; McDonough K; Ding Y
    Nucleic Acids Res; 2006; 34(19):5660-9. PubMed ID: 17038332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of antisense oligonucleotide binding affinity to a structured RNA target.
    Walton SP; Stephanopoulos GN; Yarmush ML; Roth CM
    Biotechnol Bioeng; 1999 Oct; 65(1):1-9. PubMed ID: 10440665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of the T98G glioblastoma cell line with antisense oligonucleotides directed toward mRNA encoding transforming growth factor-alpha and the epidermal growth factor receptor.
    Rubenstein M; Glick R; Lichtor T; Mirochnik Y; Chou P; Guinan P
    Med Oncol; 2001; 18(2):121-30. PubMed ID: 11778757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of phage phi 29 assembly by antisense oligonucleotides targeting viral pRNA essential for DNA packaging.
    Zhang C; Garver K; Guo P
    Virology; 1995 Aug; 211(2):568-76. PubMed ID: 7645260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of antisense oligonucleotides using structural and thermodynamic motifs.
    Anusha AR; Chandra V
    Bioinformation; 2012; 8(23):1162-6. PubMed ID: 23275713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos.
    Morcos PA
    Biochem Biophys Res Commun; 2007 Jun; 358(2):521-7. PubMed ID: 17493584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A more efficient and specific strategy in the ablation of mRNA in Xenopus laevis using mixtures of antisense oligos.
    Morgan R; Edge M; Colman A
    Nucleic Acids Res; 1993 Sep; 21(19):4615-20. PubMed ID: 8233799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New twists in understanding the fate of antisense oligodeoxynucleotide mRNA targets.
    Steiger MA; Decker CJ
    Mol Cell; 2001 Oct; 8(4):732-3. PubMed ID: 11684007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of potent antisense oligonucleotides in vitro by semiempirical rules.
    Yanagihara N; Tadakuma H; Ishihama Y; Okabe K; Funatsu T
    J Biosci Bioeng; 2007 Mar; 103(3):270-7. PubMed ID: 17434431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of branched antisense oligonucleotides having multiple specificities. Treatment of hormone insensitive prostate cancer.
    Rubenstein M; Anderson KM; Tsui P; Guinan P
    Med Hypotheses; 2006; 67(6):1375-80. PubMed ID: 16870352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis.
    Liu CC; Lin CC; Li KC; Chen WS; Chen JC; Yang MT; Yang PC; Chang PC; Chen JJ
    BMC Bioinformatics; 2007 May; 8():164. PubMed ID: 17518996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bispecific antisense oligonucleotides with multiple binding sites for the treatment of prostate tumors and their applicability to combination therapy.
    Rubenstein M; Tsui P; Guinan P
    Methods Find Exp Clin Pharmacol; 2006 Oct; 28(8):515-8. PubMed ID: 17136230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex PCR to assay the effect of nucleic acid-based inhibitors on prothrombin transcript level.
    Böhl M; Schwenzer B
    Chem Biol Drug Des; 2007 Mar; 69(3):212-5. PubMed ID: 17441907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.