These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 12365622)
1. Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory. Ye JS; Dong BZ; Gu BY; Yang GZ; Liu ST J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):2030-5. PubMed ID: 12365622 [TBL] [Abstract][Full Text] [Related]
2. Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. Dong BZ; Liu J; Gu BY; Yang GZ; Wang J J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1465-70. PubMed ID: 11444537 [TBL] [Abstract][Full Text] [Related]
3. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations. Ye JS; Dong BZ; Gu BY; Liu ST Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238 [TBL] [Abstract][Full Text] [Related]
5. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination. Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267 [TBL] [Abstract][Full Text] [Related]
6. Diffractive performance of a photon-sieve-based axilens. Sabatyan A; Hoseini SA Appl Opt; 2014 Nov; 53(31):7331-6. PubMed ID: 25402896 [TBL] [Abstract][Full Text] [Related]
7. Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution. Mei GA; Ye JS; Zhang Y; Lin J J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1051-7. PubMed ID: 21643390 [TBL] [Abstract][Full Text] [Related]
8. Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution. Di F; Yingbai Y; Guofan J; Minxian W Opt Express; 2003 Aug; 11(17):1987-94. PubMed ID: 19466084 [TBL] [Abstract][Full Text] [Related]
9. Design of microlenses with long focal depth based on the general focal length function. Lin J; Liu J; Ye J; Liu S J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644 [TBL] [Abstract][Full Text] [Related]
10. Holographic axilens: high resolution and long focal depth. Davidson N; Friesem AA; Hasman E Opt Lett; 1991 Apr; 16(7):523-5. PubMed ID: 19773987 [TBL] [Abstract][Full Text] [Related]
11. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution. Feng D; Ou P; Feng LS; Hu SL; Zhang CX Opt Express; 2008 Dec; 16(25):20968-73. PubMed ID: 19065236 [TBL] [Abstract][Full Text] [Related]
13. Imaging with extended focal depth by means of lenses with radial and angular modulation. Mikula G; Jaroszewicz Z; Kolodziejczyk A; Petelczyc K; Sypek M Opt Express; 2007 Jul; 15(15):9184-93. PubMed ID: 19547260 [TBL] [Abstract][Full Text] [Related]
14. Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. Pan D; Liu S; Ji S; Cai Z; Li J; Hou Y; Zhang W; Fan S; Li R; Hu Y; Zhu W; Wu D; Chu J Opt Lett; 2020 Feb; 45(4):897-900. PubMed ID: 32058499 [TBL] [Abstract][Full Text] [Related]
15. Rigorous electromagnetic analysis of two dimensional micro-axicon by boundary integral equations. Lin J; Tan J; Liu J; Liu S Opt Express; 2009 Feb; 17(3):1466-71. PubMed ID: 19188975 [TBL] [Abstract][Full Text] [Related]
16. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Pan D; Xu B; Liu S; Li J; Hu Y; Wu D; Chu J Opt Lett; 2020 May; 45(9):2584-2587. PubMed ID: 32356822 [TBL] [Abstract][Full Text] [Related]
17. Achromatic hybrid refractive-diffractive lens with extended depth of focus. Flores A; Wang MR; Yang JJ Appl Opt; 2004 Oct; 43(30):5618-30. PubMed ID: 15534993 [TBL] [Abstract][Full Text] [Related]
18. Phase retardation of the uniform-intensity axilens. Sochacki J; Bará S; Jaroszewicz Z; Kołodziejczyk A Opt Lett; 1992 Jan; 17(1):7-9. PubMed ID: 19784212 [TBL] [Abstract][Full Text] [Related]
19. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions. Villar PI; Soba A Phys Rev E; 2017 Jul; 96(1-1):013307. PubMed ID: 29347069 [TBL] [Abstract][Full Text] [Related]
20. Entirely electromagnetic analysis of microlenses without a beam-shaping aperture. Liu J; Dong BZ; Gu BY; Yang GZ Appl Opt; 2001 Apr; 40(10):1686-91. PubMed ID: 18357165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]