These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12365630)

  • 1. New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy.
    Booth MJ; Neil MA; Wilson T
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):2112-20. PubMed ID: 12365630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction.
    Booth MJ; Wilson T
    J Biomed Opt; 2001 Jul; 6(3):266-72. PubMed ID: 11516315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.
    Schwertner M; Booth MJ; Neil MA; Wilson T
    J Microsc; 2004 Jan; 213(1):11-9. PubMed ID: 14678508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop aberration correction by use of a modal Zernike wave-front sensor.
    Neil MA; Booth MJ; Wilson T
    Opt Lett; 2000 Aug; 25(15):1083-5. PubMed ID: 18064278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New modal wave-front sensor: a theoretical analysis.
    Neil MA; Booth MJ; Wilson T
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jun; 17(6):1098-107. PubMed ID: 10850481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast modal wave-front sensor.
    Ribak E; Ebstein S
    Opt Express; 2001 Jul; 9(3):152-7. PubMed ID: 19421284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror.
    Sherman L; Ye JY; Albert O; Norris TB
    J Microsc; 2002 Apr; 206(Pt 1):65-71. PubMed ID: 12000564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric view of adaptive optics control.
    Wiberg DM; Max CE; Gavel DT
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):870-80. PubMed ID: 15898546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment.
    Egner A; Andresen V; Hell SW
    J Microsc; 2002 Apr; 206(Pt 1):24-32. PubMed ID: 12000560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing specimen induced aberrations for high NA adaptive optical microscopy.
    Schwertner M; Booth M; Wilson T
    Opt Express; 2004 Dec; 12(26):6540-52. PubMed ID: 19488305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2004 Sep; 215(Pt 3):271-80. PubMed ID: 15312192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.
    Fraisier V; Clouvel G; Jasaitis A; Dimitrov A; Piolot T; Salamero J
    J Microsc; 2015 Sep; 259(3):219-27. PubMed ID: 25940062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.
    Pozzi P; Soloviev O; Wilding D; Vdovin G; Verhaegen M
    PLoS One; 2018; 13(3):e0194523. PubMed ID: 29558510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of correction in modal sensorless adaptive optics.
    Facomprez A; Beaurepaire E; Débarre D
    Opt Express; 2012 Jan; 20(3):2598-612. PubMed ID: 22330498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation.
    Bailey B; Farkas DL; Taylor DL; Lanni F
    Nature; 1993 Nov; 366(6450):44-8. PubMed ID: 8232536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of optically thick specimen using two-photon excitation microscopy.
    Gerritsen HC; De Grauw CJ
    Microsc Res Tech; 1999 Nov; 47(3):206-9. PubMed ID: 10544335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy.
    Wright AJ; Burns D; Patterson BA; Poland SP; Valentine GJ; Girkin JM
    Microsc Res Tech; 2005 May; 67(1):36-44. PubMed ID: 16025475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive wave-front correction by means of all-optical feedback interferometry.
    Shirai T; Barnes TH; Haskell TG
    Opt Lett; 2000 Jun; 25(11):773-5. PubMed ID: 18064179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.