These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 12365630)
21. Two-photon microscopy and spectroscopy based on a compact confocal scanning head. Diaspro A; Chirico G; Federici F; Cannone F; Beretta S; Robello M J Biomed Opt; 2001 Jul; 6(3):300-10. PubMed ID: 11516320 [TBL] [Abstract][Full Text] [Related]
22. Adaptive-optics correction of a stellar interferometer with a single pyramid wave-front sensor. Verinaud C; Esposito S Opt Lett; 2002 Apr; 27(7):470-2. PubMed ID: 18007834 [TBL] [Abstract][Full Text] [Related]
23. Aberration correction in an adaptive free-space optical interconnect with an error diffusion algorithm. Gil-Leyva D; Robertson B; Wilkinson TD; Henderson CJ Appl Opt; 2006 Jun; 45(16):3782-92. PubMed ID: 16724138 [TBL] [Abstract][Full Text] [Related]
25. Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging. Uzunbajakava N; Otto C Opt Lett; 2003 Nov; 28(21):2073-5. PubMed ID: 14587819 [TBL] [Abstract][Full Text] [Related]
26. Wave-front aberrations in the anterior corneal surface and the whole eye. He JC; Gwiazda J; Thorn F; Held R J Opt Soc Am A Opt Image Sci Vis; 2003 Jul; 20(7):1155-63. PubMed ID: 12868623 [TBL] [Abstract][Full Text] [Related]
27. Two-photon excitation of fluorescence in three-dimensional microscopy. Diaspro A; Robello M Eur J Histochem; 1999; 43(3):169-78. PubMed ID: 10563249 [No Abstract] [Full Text] [Related]
28. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging. Sahu P; Mazumder N Lasers Med Sci; 2020 Mar; 35(2):317-328. PubMed ID: 31729608 [TBL] [Abstract][Full Text] [Related]
29. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Centonze VE; White JG Biophys J; 1998 Oct; 75(4):2015-24. PubMed ID: 9746543 [TBL] [Abstract][Full Text] [Related]
30. Two-photon excitation fluorescence microscopy. So PT; Dong CY; Masters BR; Berland KM Annu Rev Biomed Eng; 2000; 2():399-429. PubMed ID: 11701518 [TBL] [Abstract][Full Text] [Related]
31. Variational solution for modal wave-front projection functions of minimum-error norm. Solomon CJ; Loos GC; Rios S J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1519-22. PubMed ID: 11444543 [TBL] [Abstract][Full Text] [Related]
32. Aberration-free optical refocusing in high numerical aperture microscopy. Botcherby EJ; Juskaitis R; Booth MJ; Wilson T Opt Lett; 2007 Jul; 32(14):2007-9. PubMed ID: 17632625 [TBL] [Abstract][Full Text] [Related]
33. An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Mu Q; Cao Z; Hu L; Li D; Xuan L Opt Express; 2006 Sep; 14(18):8013-8. PubMed ID: 19529171 [TBL] [Abstract][Full Text] [Related]
34. Twin-photon confocal microscopy. Simon DS; Sergienko AV Opt Express; 2010 Oct; 18(21):22147-57. PubMed ID: 20941116 [TBL] [Abstract][Full Text] [Related]
35. Extended Nijboer-Zernike approach for the computation of optical point-spread functions. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):849-57. PubMed ID: 11999961 [TBL] [Abstract][Full Text] [Related]
39. Accurate aberration correction in confocal microscopy based on modal sensorless method. Liu J; Zhao W; Liu C; Kong C; Zhao Y; Ding X; Tan J Rev Sci Instrum; 2019 May; 90(5):053703. PubMed ID: 31153250 [TBL] [Abstract][Full Text] [Related]
40. Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror. Zhu L; Sun PC; Bartsch DU; Freeman WR; Fainman Y Appl Opt; 1999 Oct; 38(28):6019-26. PubMed ID: 18324122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]