These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12365630)

  • 41. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.
    Albert O; Sherman L; Mourou G; Norris TB; Vdovin G
    Opt Lett; 2000 Jan; 25(1):52-4. PubMed ID: 18059779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of a confocal pinhole in two-photon microscopy.
    Gauderon R; Lukins PB; Sheppard CJ
    Microsc Res Tech; 1999 Nov; 47(3):210-4. PubMed ID: 10544336
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast scanning and efficient photodetection in a simple two-photon microscope.
    Tan YP; Llano I; Hopt A; Würriehausen F; Neher E
    J Neurosci Methods; 1999 Oct; 92(1-2):123-35. PubMed ID: 10595710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modal compensation of atmospheric turbulence induced wave front aberrations.
    Winocur J
    Appl Opt; 1982 Feb; 21(3):433-8. PubMed ID: 20372474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of freeform mirror systems based on the decomposition of the total wave aberration into Zernike surface contributions.
    Oleszko M; Gross H
    Appl Opt; 2018 Mar; 57(9):1998-2006. PubMed ID: 29604037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Practical aspects of quantitative confocal microscopy.
    Murray JM
    Methods Cell Biol; 2013; 114():427-40. PubMed ID: 23931517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination.
    Yeh CH; Chen SY
    Appl Opt; 2015 Mar; 54(9):2309-17. PubMed ID: 25968516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A demonstration of the effectiveness of a single aberration correction per optical slice in beam scanned optically sectioning microscopes.
    Poland SP; Wright AJ; Cobb S; Vijverberg JC; Girkin JM
    Micron; 2011 Jun; 42(4):318-23. PubMed ID: 20932768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120.
    Kumazaki S; Hasegawa M; Ghoneim M; Shimizu Y; Okamoto K; Nishiyama M; Oh-Oka H; Terazima M
    J Microsc; 2007 Nov; 228(Pt 2):240-54. PubMed ID: 17970923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion.
    Vorontsov MA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):356-68. PubMed ID: 11822599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive optics with advanced phase-contrast techniques. I. High-resolution wave-front sensing.
    Vorontsov MA; Justh EW; Beresnev LA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jun; 18(6):1289-99. PubMed ID: 11393622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations.
    Gallagher J; Delon A; Moreau P; Wang I
    Opt Express; 2017 Jun; 25(13):15558-15571. PubMed ID: 28788978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EFGP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy.
    Jakobs S; Subramaniam V; Schönle A; Jovin TM; Hell SW
    FEBS Lett; 2000 Aug; 479(3):131-5. PubMed ID: 10981721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wave front sensor-less adaptive optics: a model-based approach using sphere packings.
    Booth M
    Opt Express; 2006 Feb; 14(4):1339-52. PubMed ID: 19503457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Super-resolution spinning-disk confocal microscopy using optical photon reassignment.
    Azuma T; Kei T
    Opt Express; 2015 Jun; 23(11):15003-11. PubMed ID: 26072856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antecedents of two-photon excitation laser scanning microscopy.
    Masters BR; So PT
    Microsc Res Tech; 2004 Jan; 63(1):3-11. PubMed ID: 14677127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.