These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Stationary pulses of light in an atomic medium. Bajcsy M; Zibrov AS; Lukin MD Nature; 2003 Dec; 426(6967):638-41. PubMed ID: 14668857 [TBL] [Abstract][Full Text] [Related]
4. Coherent and dynamic beam splitting based on light storage in cold atoms. Park KK; Zhao TM; Lee JC; Chough YT; Kim YH Sci Rep; 2016 Sep; 6():34279. PubMed ID: 27677457 [TBL] [Abstract][Full Text] [Related]
5. Optically tunable photonic stop bands in homogeneous absorbing media. Artoni M; La Rocca GC Phys Rev Lett; 2006 Feb; 96(7):073905. PubMed ID: 16606093 [TBL] [Abstract][Full Text] [Related]
6. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media. Zhang Y; Wu Z; Yao X; Zhang Z; Chen H; Zhang H; Zhang Y Opt Express; 2013 Dec; 21(24):29338-49. PubMed ID: 24514487 [TBL] [Abstract][Full Text] [Related]
9. Double photonic bandgaps dynamically induced in a tripod system of cold atoms. Cui CL; Wu JH; Gao JW; Zhang Y; Ba N Opt Express; 2010 Mar; 18(5):4538-46. PubMed ID: 20389466 [TBL] [Abstract][Full Text] [Related]
10. Optical diode made from a moving photonic crystal. Wang DW; Zhou HT; Guo MJ; Zhang JX; Evers J; Zhu SY Phys Rev Lett; 2013 Mar; 110(9):093901. PubMed ID: 23496710 [TBL] [Abstract][Full Text] [Related]
11. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor. Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173 [TBL] [Abstract][Full Text] [Related]
12. Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap. Zhang Z; Ma D; Zhang Y; Cao M; Xu Z; Zhang Y Opt Lett; 2017 Mar; 42(6):1059-1062. PubMed ID: 28295091 [TBL] [Abstract][Full Text] [Related]
13. Slow-light six-wave mixing at low light intensities. Kang H; Hernandez G; Zhu Y Phys Rev Lett; 2004 Aug; 93(7):073601. PubMed ID: 15324236 [TBL] [Abstract][Full Text] [Related]
14. Coexistence of a self-induced transparency soliton and a Bragg soliton. Tseng HY; Chi S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056606. PubMed ID: 12513622 [TBL] [Abstract][Full Text] [Related]
15. Infrared switching from resonant to passive photonic bandgaps: transition from purely photonic to hybrid electronic/photonic systems. Sadeghi SM; Li W J Phys Condens Matter; 2009 Apr; 21(15):155801. PubMed ID: 21825372 [TBL] [Abstract][Full Text] [Related]
16. Observation of coherent optical information storage in an atomic medium using halted light pulses. Liu C; Dutton Z; Behroozi CH; Hau LV Nature; 2001 Jan; 409(6819):490-3. PubMed ID: 11206540 [TBL] [Abstract][Full Text] [Related]
17. Controllable photonic crystal with periodic Raman gain in a coherent atomic medium. Zhang Z; Feng J; Liu X; Sheng J; Zhang Y; Zhang Y; Xiao M Opt Lett; 2018 Feb; 43(4):919-922. PubMed ID: 29444027 [TBL] [Abstract][Full Text] [Related]
18. Electromagnetically induced transparency with resonant nuclei in a cavity. Röhlsberger R; Wille HC; Schlage K; Sahoo B Nature; 2012 Feb; 482(7384):199-203. PubMed ID: 22318603 [TBL] [Abstract][Full Text] [Related]
19. Coherent control of optical information with matter wave dynamics. Ginsberg NS; Garner SR; Hau LV Nature; 2007 Feb; 445(7128):623-6. PubMed ID: 17287804 [TBL] [Abstract][Full Text] [Related]
20. Atomic memory for correlated photon states. van der Wal CH; Eisaman MD; André A; Walsworth RL; Phillips DF; Zibrov AS; Lukin MD Science; 2003 Jul; 301(5630):196-200. PubMed ID: 12764202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]