These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 12366172)
1. Infinities of stable periodic orbits in systems of coupled oscillators. Ashwin P; Rucklidge AM; Sturman R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):035201. PubMed ID: 12366172 [TBL] [Abstract][Full Text] [Related]
2. Phase resetting effects for robust cycles between chaotic sets. Ashwin P; Field M; Rucklidge AM; Sturman R Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [TBL] [Abstract][Full Text] [Related]
3. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
4. Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles. Li D; Cross MC; Zhou C; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016215. PubMed ID: 22400651 [TBL] [Abstract][Full Text] [Related]
5. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Ashwin P; Borresen J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026203. PubMed ID: 15447561 [TBL] [Abstract][Full Text] [Related]
6. Cycles homoclinic to chaotic sets; robustness and resonance. Ashwin P Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649 [TBL] [Abstract][Full Text] [Related]
7. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states. Lee WS; Ott E; Antonsen TM Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952 [TBL] [Abstract][Full Text] [Related]
9. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles. Dhamala M; Lai YC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527 [TBL] [Abstract][Full Text] [Related]
10. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
11. A "saddle-node" bifurcation scenario for birth or destruction of a Smale-Williams solenoid. Isaeva OB; Kuznetsov SP; Sataev IR Chaos; 2012 Dec; 22(4):043111. PubMed ID: 23278046 [TBL] [Abstract][Full Text] [Related]
12. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
13. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results. Belykh VN; Barabash NV; Belykh IV Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821 [TBL] [Abstract][Full Text] [Related]
14. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators. He Z; Sun Y; Zhan M Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578 [TBL] [Abstract][Full Text] [Related]
15. Destruction and resurgence of the quasiperiodic shearless attractor. Baroni RS; Egydio de Carvalho R Phys Rev E; 2021 Jul; 104(1-1):014207. PubMed ID: 34412355 [TBL] [Abstract][Full Text] [Related]
16. Stable heteroclinic cycles for ensembles of chaotic oscillators. Kuznetsov AS; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026201. PubMed ID: 12241261 [TBL] [Abstract][Full Text] [Related]
17. Multistability of twisted states in non-locally coupled Kuramoto-type models. Girnyk T; Hasler M; Maistrenko Y Chaos; 2012 Mar; 22(1):013114. PubMed ID: 22462990 [TBL] [Abstract][Full Text] [Related]
18. Analysis of chaotic oscillations induced in two coupled Wilson-Cowan models. Maruyama Y; Kakimoto Y; Araki O Biol Cybern; 2014 Jun; 108(3):355-63. PubMed ID: 24789794 [TBL] [Abstract][Full Text] [Related]
19. Noise-constrained switching times for heteroclinic computing. Neves FS; Voit M; Timme M Chaos; 2017 Mar; 27(3):033107. PubMed ID: 28364740 [TBL] [Abstract][Full Text] [Related]
20. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]