These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 12366219)

  • 1. Chaotic dynamics and orbit stability in the parabolic oval billiard.
    Lopac V; Mrkonjić I; Radić D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036202. PubMed ID: 12366219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic behavior in lemon-shaped billiards with elliptical and hyperbolic boundary arcs.
    Lopac V; Mrkonjić I; Radić D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016214. PubMed ID: 11461374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism.
    da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED
    Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaking billiards.
    Nagler J; Krieger M; Linke M; Schönke J; Wiersig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear stability of periodic orbits in annular billiards.
    Dettmann CP; Fain V
    Chaos; 2017 Apr; 27(4):043106. PubMed ID: 28456178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bouncing ball orbits and symmetry breaking effects in a three-dimensional chaotic billiard.
    Dietz B; Mössner B; Papenbrock T; Reif U; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046221. PubMed ID: 18517724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of chaotic and regular dynamics in atom-optics billiards.
    Friedman N; Kaplan A; Carasso D; Davidson N
    Phys Rev Lett; 2001 Feb; 86(8):1518-21. PubMed ID: 11290182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Lyapunov exponent in inverse magnetic billiards.
    Vörös Z; Tasnádi T; Cserti J; Pollner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065202. PubMed ID: 16241292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, size, and statistical properties of chaotic components in a mixed-type Hamiltonian system.
    Lozej Č; Robnik M
    Phys Rev E; 2018 Aug; 98(2-1):022220. PubMed ID: 30253479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics.
    Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic scattering by steep repelling potentials.
    Rapoport A; Rom-Kedar V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016207. PubMed ID: 18351926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermi acceleration in chaotic shape-preserving billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional billiards: Visualization of regular structures and trapping of chaotic trajectories.
    Firmbach M; Lange S; Ketzmerick R; Bäcker A
    Phys Rev E; 2018 Aug; 98(2-1):022214. PubMed ID: 30253550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of phase-space localization on the energy diffusion in a quantum chaotic billiard.
    Wisniacki DA; Vergini E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6579-84. PubMed ID: 11969645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrence time distribution in mushroom billiards with parabolic hat.
    Tanaka H; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036211. PubMed ID: 17025733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical billiards and quantum fluids.
    Araújo Lima T; de Aguiar FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012923. PubMed ID: 25679697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and ergodicity of moon billiards.
    Correia MF; Zhang HK
    Chaos; 2015 Aug; 25(8):083110. PubMed ID: 26328561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic chaotic billiards: quantum-classical correspondence in energy space.
    Luna-Acosta GA; Méndez-Bermúdez JA; Izrailev FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036206. PubMed ID: 11580421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-particle circular billiards versus randomly perturbed one-particle circular billiards.
    Ranković S; Porter MA
    Chaos; 2013 Mar; 23(1):013123. PubMed ID: 23556960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical properties of the soft-wall elliptical billiard.
    Kroetz T; Oliveira HA; Portela JS; Viana RL
    Phys Rev E; 2016 Aug; 94(2-1):022218. PubMed ID: 27627309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.