These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12366236)

  • 1. Oscillatory reactive dynamics on surfaces: a lattice limit cycle model.
    Shabunin AV; Baras F; Provata A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036219. PubMed ID: 12366236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal properties of the lattice Lotka-Volterra model.
    Tsekouras GA; Provata A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016204. PubMed ID: 11800765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial fluctuations and anomalous reaction order in a reactive scheme involving a cooperative full desorption.
    Córdoba-Torres P; Nogueira RP; Fairén V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061108. PubMed ID: 15697342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal oscillations and clustering in the Ziff-Gulari-Barshad model with surface reconstruction.
    Provata A; Noussiou VK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066108. PubMed ID: 16486011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillations and dynamics in a two-dimensional prey-predator system.
    Kowalik M; Lipowski A; Ferreira AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066107. PubMed ID: 12513347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory behavior in a lattice prey-predator system.
    Lipowski A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5179-84. PubMed ID: 11970386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of stochastic oscillations due to long-range diffusion.
    Efimov A; Shabunin A; Provata A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056201. PubMed ID: 19113194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model.
    Makeev AG; Kurkina ES; Kevrekidis IG
    Chaos; 2012 Jun; 22(2):023141. PubMed ID: 22757548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions and oscillations in a lattice prey-predator model.
    Antal T; Droz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056119. PubMed ID: 11414973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial rock-paper-scissors models with inhomogeneous reaction rates.
    He Q; Mobilia M; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051909. PubMed ID: 21230502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation.
    Sandhu P; Zong J; Yang D; Wang Q
    J Chem Phys; 2013 May; 138(19):194904. PubMed ID: 23697438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory cellular patterns in three-dimensional directional solidification.
    Tourret D; Debierre JM; Song Y; Mota FL; Bergeon N; Guérin R; Trivedi R; Billia B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042401. PubMed ID: 26565251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption behavior of repulsive molecules.
    Aranovich GL; Wetzel TE; Donohue MD
    J Phys Chem B; 2005 May; 109(20):10189-93. PubMed ID: 16852235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Master equation simulations of a model of a thermochemical system.
    Kawczyński AL; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036218. PubMed ID: 14524879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wang-Landau study of a lattice model for lipid bilayer self-assembly.
    Gai L; Maerzke K; Cummings PT; McCabe C
    J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms.
    Leloup JC; Goldbeter A
    J Theor Biol; 2004 Oct; 230(4):541-62. PubMed ID: 15363675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear reactive systems on a lattice viewed as Boolean dynamical systems.
    Abad E; Grosfils P; Nicolis G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041102. PubMed ID: 11308814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.