These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12366241)

  • 1. Phase multistability of self-modulated oscillations.
    Sosnovtseva OV; Postnov DE; Nekrasov AM; Mosekilde E; Holstein-Rathlou NH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036224. PubMed ID: 12366241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators.
    Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM
    Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hopf bifurcation and multistability in a system of phase oscillators.
    Astakhov S; Fujiwara N; Gulay A; Tsukamoto N; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032908. PubMed ID: 24125326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex phase dynamics in coupled bursters.
    Postnov DE; Sosnovtseva OV; Malova SY; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016215. PubMed ID: 12636593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of multistability in the transition to chaotic phase synchronization.
    Postnov DE; Vadivasova TE; Sosnovtseva OV; Balanov AG; Anishchenko VS; Mosekilde E
    Chaos; 1999 Mar; 9(1):227-232. PubMed ID: 12779818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peculiarities of the transitions to synchronization in coupled systems with amplitude death.
    Astakhov V; Koblyanskii S; Shabunin A; Kapitaniak T
    Chaos; 2011 Jun; 21(2):023127. PubMed ID: 21721769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-locking swallows in coupled oscillators with delayed feedback.
    Popovych OV; Krachkovskyi V; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046203. PubMed ID: 21230361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators.
    Wolfrum M; Omel'chenko OE; Sieber J
    Chaos; 2015 May; 25(5):053113. PubMed ID: 26026325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.
    Burylko O; Kazanovich Y; Borisyuk R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022911. PubMed ID: 25215803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators.
    Astakhov OV; Astakhov SV; Krakhovskaya NS; Astakhov VV; Kurths J
    Chaos; 2018 Jun; 28(6):063118. PubMed ID: 29960386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurologically Motivated Coupling Functions in Models of Motor Coordination.
    Słowiński P; Al-Ramadhani S; Tsaneva-Atanasova K
    SIAM J Appl Dyn Syst; 2020; 19(1):208-232. PubMed ID: 31992962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays.
    Williams CR; Sorrentino F; Murphy TE; Roy R
    Chaos; 2013 Dec; 23(4):043117. PubMed ID: 24387556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators.
    Dodla R; Sen A; Johnston GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme multistability: Attractor manipulation and robustness.
    Hens C; Dana SK; Feudel U
    Chaos; 2015 May; 25(5):053112. PubMed ID: 26026324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling.
    Song Y; Xu J; Zhang T
    Chaos; 2011 Jun; 21(2):023111. PubMed ID: 21721753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexisting attractors in periodically modulated logistic maps.
    Singh TU; Nandi A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066217. PubMed ID: 18643360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical time-delay synchronization of a periodically modulated self-excited oscillators with uncertainties.
    Kakmeni FM; Bowong S; Senthikumar DV; Kurths J
    Chaos; 2010 Dec; 20(4):043121. PubMed ID: 21198091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.