These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12366248)

  • 1. Clustering instability of the spatial distribution of inertial particles in turbulent flows.
    Elperin T; Kleeorin N; L'vov VS; Rogachevskii I; Sokoloff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036302. PubMed ID: 12366248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere.
    Elperin T; Kleeorin N; Krasovitov B; Kulmala M; Liberman M; Rogachevskii I; Zilitinkevich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013012. PubMed ID: 26274274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tangling clustering of inertial particles in stably stratified turbulence.
    Eidelman A; Elperin T; Kleeorin N; Melnik B; Rogachevskii I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056313. PubMed ID: 20866328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-field theory for a passive scalar advected by a turbulent velocity field with a random renewal time.
    Elperin T; Kleeorin N; Rogachevskii I; Sokoloff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026304. PubMed ID: 11497696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent distribution of inertial particles in turbulent flows.
    Balkovsky E; Falkovich G; Fouxon A
    Phys Rev Lett; 2001 Mar; 86(13):2790-3. PubMed ID: 11290040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering of inertial particles in compressible chaotic flows.
    Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052906. PubMed ID: 26066228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering dynamics of Lagrangian tracers in free-surface flows.
    Schumacher J; Eckhardt B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):017303. PubMed ID: 12241522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strange behavior of a passive scalar in a linear velocity field.
    Elperin T; Kleeorin N; Rogachevskii I; Sokoloff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046305. PubMed ID: 11308943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of charged inertial particles in turbulence.
    Lu J; Nordsiek H; Saw EW; Shaw RA
    Phys Rev Lett; 2010 May; 104(18):184505. PubMed ID: 20482181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering and collision of inertial particles in random velocity fields.
    Olla P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):065301. PubMed ID: 18643325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backward Finite-Time Lyapunov Exponents in Inertial Flows.
    Gunther T; Theisel H
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):970-979. PubMed ID: 27875210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuum description of finite-size particles advected by external flows: the effect of collisions.
    López C; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046306. PubMed ID: 15169098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence.
    Bragg AD; Ireland PJ; Collins LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023029. PubMed ID: 26382525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advection of finite-size particles in open flows.
    Benczik IJ; Toroczkai Z; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036303. PubMed ID: 12689161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame.
    Benzi R; Biferale L; Calzavarini E; Lohse D; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066318. PubMed ID: 20365278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-correlated dispersion of inertial particles in free shear flows.
    Luo K; Fan J; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046309. PubMed ID: 17500995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential concentration versus clustering in inertial particle transport by random velocity fields.
    Olla P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016305. PubMed ID: 20365458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.