These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12366258)

  • 1. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts.
    Cheng B; Glimm J; Sharp DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Mikaelian KO
    Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buoyancy-drag mix model obtained by multifluid interpenetration equations.
    Cheng B; Scannapieco AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space.
    Abarzhi SI; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios.
    Alon U; Hecht J; Ofer D; Shvarts D
    Phys Rev Lett; 1995 Jan; 74(4):534-537. PubMed ID: 10058782
    [No Abstract]   [Full Text] [Related]  

  • 15. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Zhou Y; Zimmerman GB; Burke EW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative modeling of bubble competition in Richtmyer-Meshkov instability.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017302. PubMed ID: 18764086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing.
    Cheng B; Glimm J; Sharp DH
    Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field.
    Sun YB; Wang C
    Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistent, high-order spatial profiles in a model for two-fluid turbulent mixing.
    Morgan BE
    Phys Rev E; 2021 Jul; 104(1-2):015107. PubMed ID: 34412370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.