These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Perturbative steady states of completely positive quantum master equations. Lee JS; Yeo J Phys Rev E; 2022 Nov; 106(5-1):054145. PubMed ID: 36559365 [TBL] [Abstract][Full Text] [Related]
4. Reduced density matrix for nonequilibrium steady states: a modified Redfield solution approach. Thingna J; Wang JS; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052127. PubMed ID: 24329234 [TBL] [Abstract][Full Text] [Related]
5. General non-markovian structure of Gaussian master and stochastic Schrödinger equations. Diósi L; Ferialdi L Phys Rev Lett; 2014 Nov; 113(20):200403. PubMed ID: 25432028 [TBL] [Abstract][Full Text] [Related]
6. On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation. Lai Y; Geva E J Chem Phys; 2021 Nov; 155(20):204101. PubMed ID: 34852488 [TBL] [Abstract][Full Text] [Related]
7. Perturbation expansions of stochastic wavefunctions for open quantum systems. Ke Y; Zhao Y J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416 [TBL] [Abstract][Full Text] [Related]
8. Electronic absorption spectra from off-diagonal quantum master equations. Lai Y; Geva E J Chem Phys; 2022 Sep; 157(10):104115. PubMed ID: 36109232 [TBL] [Abstract][Full Text] [Related]
9. Application of a time-convolutionless stochastic Schrödinger equation to energy transport and thermal relaxation. Biele R; Timm C; D'Agosta R J Phys Condens Matter; 2014 Oct; 26(39):395303. PubMed ID: 25204376 [TBL] [Abstract][Full Text] [Related]
10. Rate Operator Unraveling for Open Quantum System Dynamics. Smirne A; Caiaffa M; Piilo J Phys Rev Lett; 2020 May; 124(19):190402. PubMed ID: 32469534 [TBL] [Abstract][Full Text] [Related]
11. Markovian exchange phenomena in magnetic resonance and the Lindblad equation. Bengs C J Magn Reson; 2021 Jan; 322():106868. PubMed ID: 33253960 [TBL] [Abstract][Full Text] [Related]
12. Characteristic functions based on a quantum jump trajectory. Liu F; Xi J Phys Rev E; 2016 Dec; 94(6-1):062133. PubMed ID: 28085337 [TBL] [Abstract][Full Text] [Related]
13. Non-Markovian quantum jump with generalized Lindblad master equation. Huang XL; Sun HY; Yi XX Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041107. PubMed ID: 18999379 [TBL] [Abstract][Full Text] [Related]
14. Optical line shapes of molecular aggregates: hierarchical equations of motion method. Chen L; Zheng R; Shi Q; Yan Y J Chem Phys; 2009 Sep; 131(9):094502. PubMed ID: 19739856 [TBL] [Abstract][Full Text] [Related]
15. Quantum trajectory framework for general time-local master equations. Donvil B; Muratore-Ginanneschi P Nat Commun; 2022 Jul; 13(1):4140. PubMed ID: 35842427 [TBL] [Abstract][Full Text] [Related]
16. Stochastic simulation algorithm for the quantum linear Boltzmann equation. Busse M; Pietrulewicz P; Breuer HP; Hornberger K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026706. PubMed ID: 20866939 [TBL] [Abstract][Full Text] [Related]
17. Post-Markovian quantum master equations from classical environment fluctuations. Budini AA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012147. PubMed ID: 24580212 [TBL] [Abstract][Full Text] [Related]
19. General Non-Markovian Quantum Dynamics. Tarasov VE Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441146 [TBL] [Abstract][Full Text] [Related]
20. Non-Markovian stochastic Schrödinger equations in different temperature regimes: a study of the spin-boson model. de Vega I; Alonso D; Gaspard P; Strunz WT J Chem Phys; 2005 Mar; 122(12):124106. PubMed ID: 15836368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]