BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12366382)

  • 1. Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish.
    Chen YH; Tsai HJ
    Differentiation; 2002 Oct; 70(8):447-56. PubMed ID: 12366382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5.
    Chen YH; Lee HC; Liu CF; Lin CY; Tsai HJ
    Dev Dyn; 2003 Sep; 228(1):41-50. PubMed ID: 12950078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myogenic determination occurs independently in somites and limb buds.
    Kablar B; Krastel K; Ying C; Tapscott SJ; Goldhamer DJ; Rudnicki MA
    Dev Biol; 1999 Feb; 206(2):219-31. PubMed ID: 9986734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis.
    Coutelle O; Blagden CS; Hampson R; Halai C; Rigby PW; Hughes SM
    Dev Biol; 2001 Aug; 236(1):136-50. PubMed ID: 11456450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional involvement of Pax-1 in somite development: somite dysmorphogenesis in chick embryos treated with Pax-1 paired-box antisense oligodeoxynucleotide.
    Smith CA; Tuan RS
    Teratology; 1995 Dec; 52(6):333-45. PubMed ID: 8711620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development.
    Kinna G; Kolle G; Carter A; Key B; Lieschke GJ; Perkins A; Little MH
    Mech Dev; 2006 Apr; 123(4):277-87. PubMed ID: 16524703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization.
    Wang YH; Li CK; Lee GH; Tsay HJ; Tsai HJ; Chen YH
    Dev Dyn; 2008 Apr; 237(4):1043-50. PubMed ID: 18297736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L.
    Cole NJ; Hall TE; Martin CI; Chapman MA; Kobiyama A; Nihei Y; Watabe S; Johnston IA
    J Exp Biol; 2004 Nov; 207(Pt 24):4239-48. PubMed ID: 15531645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The knockdown of the maternal estrogen receptor 2a (esr2a) mRNA affects embryo transcript contents and larval development in zebrafish.
    Celeghin A; Benato F; Pikulkaew S; Rabbane MG; Colombo L; Dalla Valle L
    Gen Comp Endocrinol; 2011 May; 172(1):120-9. PubMed ID: 21199655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cis-element in intron 1 represses somite expression of zebrafish myf-5.
    Lin CY; Chen YH; Lee HC; Tsai HJ
    Gene; 2004 Jun; 334():63-72. PubMed ID: 15256256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early requirement for fgf8 function during hindbrain pattern formation in zebrafish.
    Wiellette EL; Sive H
    Dev Dyn; 2004 Feb; 229(2):393-9. PubMed ID: 14745965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis.
    Rawls A; Morris JH; Rudnicki M; Braun T; Arnold HH; Klein WH; Olson EN
    Dev Biol; 1995 Nov; 172(1):37-50. PubMed ID: 7589813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish.
    Lin CY; Chen WT; Lee HC; Yang PH; Yang HJ; Tsai HJ
    Dev Biol; 2009 Jul; 331(2):152-66. PubMed ID: 19409884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4.
    Valdez MR; Richardson JA; Klein WH; Olson EN
    Dev Biol; 2000 Mar; 219(2):287-98. PubMed ID: 10694423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis.
    Lee HC; Tseng WA; Lo FY; Liu TM; Tsai HJ
    Dev Biol; 2009 Dec; 336(2):232-45. PubMed ID: 19818746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV.
    Kiefer JC; Hauschka SD
    Dev Biol; 2001 Apr; 232(1):77-90. PubMed ID: 11254349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation.
    Barnes GL; Alexander PG; Hsu CW; Mariani BD; Tuan RS
    Dev Biol; 1997 Sep; 189(1):95-111. PubMed ID: 9281340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E-cadherin regulates cell movements and tissue formation in early zebrafish embryos.
    Babb SG; Marrs JA
    Dev Dyn; 2004 Jun; 230(2):263-77. PubMed ID: 15162505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis.
    Mei J; Zhang QY; Li Z; Lin S; Gui JF
    Dev Biol; 2008 Jul; 319(2):273-84. PubMed ID: 18514183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foxd3 mediates zebrafish myf5 expression during early somitogenesis.
    Lee HC; Huang HY; Lin CY; Chen YH; Tsai HJ
    Dev Biol; 2006 Feb; 290(2):359-72. PubMed ID: 16386728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.