BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 12366816)

  • 21. Characterization of the testis and epididymis in mouse models of human Tay Sachs and Sandhoff diseases and partial determination of accumulated gangliosides.
    Trasler J; Saberi F; Somani IH; Adamali HI; Huang JQ; Fortunato SR; Ritter G; Gu M; Aebersold R; Gravel RA; Hermo L
    Endocrinology; 1998 Jul; 139(7):3280-8. PubMed ID: 9645704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism.
    Sango K; Yamanaka S; Hoffmann A; Okuda Y; Grinberg A; Westphal H; McDonald MP; Crawley JN; Sandhoff K; Suzuki K; Proia RL
    Nat Genet; 1995 Oct; 11(2):170-6. PubMed ID: 7550345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate reduction therapy of glycosphingolipid storage disorders.
    Aerts JM; Hollak CE; Boot RG; Groener JE; Maas M
    J Inherit Metab Dis; 2006; 29(2-3):449-56. PubMed ID: 16763917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composition of gangliosides and neutral glycosphingolipids of brain in classical Tay-Sachs and Sandhoff disease: more lyso-GM2 in Sandhoff disease?
    Rosengren B; Månsson JE; Svennerholm L
    J Neurochem; 1987 Sep; 49(3):834-40. PubMed ID: 3612128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.
    Huang JQ; Trasler JM; Igdoura S; Michaud J; Hanal N; Gravel RA
    Hum Mol Genet; 1997 Oct; 6(11):1879-85. PubMed ID: 9302266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The glycosphingolipidoses-from disease to basic principles of metabolism.
    Schuette CG; Doering T; Kolter T; Sandhoff K
    Biol Chem; 1999; 380(7-8):759-66. PubMed ID: 10494825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary accumulation of gangliosides in lysosomal storage disorders.
    Walkley SU
    Semin Cell Dev Biol; 2004 Aug; 15(4):433-44. PubMed ID: 15207833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate reduction therapy for lysosomal storage diseases.
    Cox TM
    Acta Paediatr Suppl; 2005 Mar; 94(447):69-75; discussion 57. PubMed ID: 15895716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases.
    Jakóbkiewicz-Banecka J; Wegrzyn A; Wegrzyn G
    J Appl Genet; 2007; 48(4):383-8. PubMed ID: 17998597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate deprivation: a new therapeutic approach for the glycosphingolipid lysosomal storage diseases.
    Platt FM; Butters TD
    Expert Rev Mol Med; 2000 Feb; 2(1):1-17. PubMed ID: 14585134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis.
    Jeyakumar M; Thomas R; Elliot-Smith E; Smith DA; van der Spoel AC; d'Azzo A; Perry VH; Butters TD; Dwek RA; Platt FM
    Brain; 2003 Apr; 126(Pt 4):974-87. PubMed ID: 12615653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin.
    Jeyakumar M; Butters TD; Cortina-Borja M; Hunnam V; Proia RL; Perry VH; Dwek RA; Platt FM
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6388-93. PubMed ID: 10339597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphology of the gangliosidoses.
    Goebel HH
    Neuropediatrics; 1984 Sep; 15 Suppl():97-106. PubMed ID: 6100800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New therapeutics for the treatment of glycosphingolipid lysosomal storage diseases.
    Butters TD; Dwek RA; Platt FM
    Adv Exp Med Biol; 2003; 535():219-26. PubMed ID: 14714898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder.
    Liu Y; Wada R; Kawai H; Sango K; Deng C; Tai T; McDonald MP; Araujo K; Crawley JN; Bierfreund U; Sandhoff K; Suzuki K; Proia RL
    J Clin Invest; 1999 Feb; 103(4):497-505. PubMed ID: 10021458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycosphingolipid metabolism and its role in ageing and Parkinson's disease.
    Wallom KL; Fernández-Suárez ME; Priestman DA; Te Vruchte D; Huebecker M; Hallett PJ; Isacson O; Platt FM
    Glycoconj J; 2022 Feb; 39(1):39-53. PubMed ID: 34757540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease.
    Ashe KM; Bangari D; Li L; Cabrera-Salazar MA; Bercury SD; Nietupski JB; Cooper CG; Aerts JM; Lee ER; Copeland DP; Cheng SH; Scheule RK; Marshall J
    PLoS One; 2011; 6(6):e21758. PubMed ID: 21738789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system.
    Rockwell HE; McCurdy VJ; Eaton SC; Wilson DU; Johnson AK; Randle AN; Bradbury AM; Gray-Edwards HL; Baker HJ; Hudson JA; Cox NR; Sena-Esteves M; Seyfried TN; Martin DR
    ASN Neuro; 2015; 7(2):. PubMed ID: 25873306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The beta-hexosaminidase deficiency disorders: development of a clinical paradigm in the mouse.
    Tifft CJ; Proia RL
    Ann Med; 1997 Dec; 29(6):557-61. PubMed ID: 9562524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphingolipid lysosomal storage disorders.
    Platt FM
    Nature; 2014 Jun; 510(7503):68-75. PubMed ID: 24899306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.