BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 12366816)

  • 41. Stemming the tide: glycosphingolipid synthesis inhibitors as therapy for storage diseases.
    Tifft CJ; Proia RL
    Glycobiology; 2000 Dec; 10(12):1249-58. PubMed ID: 11159916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Therapeutic strategies to ameliorate lysosomal storage disorders--a focus on Gaucher disease.
    Sawkar AR; D'Haeze W; Kelly JW
    Cell Mol Life Sci; 2006 May; 63(10):1179-92. PubMed ID: 16568247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses.
    Butters TD; Dwek RA; Platt FM
    Glycobiology; 2005 Oct; 15(10):43R-52R. PubMed ID: 15901676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases.
    Phaneuf D; Wakamatsu N; Huang JQ; Borowski A; Peterson AC; Fortunato SR; Ritter G; Igdoura SA; Morales CR; Benoit G; Akerman BR; Leclerc D; Hanai N; Marth JD; Trasler JM; Gravel RA
    Hum Mol Genet; 1996 Jan; 5(1):1-14. PubMed ID: 8789434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease.
    d'Azzo A; Bonten E
    Biochem Soc Trans; 2010 Dec; 38(6):1453-7. PubMed ID: 21118106
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling.
    Myerowitz R; Lawson D; Mizukami H; Mi Y; Tifft CJ; Proia RL
    Hum Mol Genet; 2002 May; 11(11):1343-50. PubMed ID: 12019216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glycosphingolipid storage leads to the enhanced degradation of the B cell receptor in Sandhoff disease mice.
    te Vruchte D; Jeans A; Platt FM; Sillence DJ
    J Inherit Metab Dis; 2010 Jun; 33(3):261-70. PubMed ID: 20458542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis.
    Kasperzyk JL; El-Abbadi MM; Hauser EC; D'Azzo A; Platt FM; Seyfried TN
    J Neurochem; 2004 May; 89(3):645-53. PubMed ID: 15086521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deletion of tumor necrosis factor-α ameliorates neurodegeneration in Sandhoff disease mice.
    Abo-Ouf H; Hooper AW; White EJ; Janse van Rensburg HJ; Trigatti BL; Igdoura SA
    Hum Mol Genet; 2013 Oct; 22(19):3960-75. PubMed ID: 23727835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycosphingolipid levels and glucocerebrosidase activity are altered in normal aging of the mouse brain.
    Hallett PJ; Huebecker M; Brekk OR; Moloney EB; Rocha EM; Priestman DA; Platt FM; Isacson O
    Neurobiol Aging; 2018 Jul; 67():189-200. PubMed ID: 29735433
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mice deficient in Neu4 sialidase exhibit abnormal ganglioside catabolism and lysosomal storage.
    Seyrantepe V; Canuel M; Carpentier S; Landry K; Durand S; Liang F; Zeng J; Caqueret A; Gravel RA; Marchesini S; Zwingmann C; Michaud J; Morales CR; Levade T; Pshezhetsky AV
    Hum Mol Genet; 2008 Jun; 17(11):1556-68. PubMed ID: 18270209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells.
    Boomkamp SD; Rountree JS; Neville DC; Dwek RA; Fleet GW; Butters TD
    Glycoconj J; 2010 Apr; 27(3):297-308. PubMed ID: 20186478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lyso-glycosphingolipids: presence and consequences.
    van Eijk M; Ferraz MJ; Boot RG; Aerts JMFG
    Essays Biochem; 2020 Sep; 64(3):565-578. PubMed ID: 32808655
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Beta-N-acetyl-hexosaminidase--the enzyme of Tay-Sachs and Sandhoff diseases].
    Zwierz K; Juszkiewicz J; Arciuch L; Gindzieński A
    Postepy Biochem; 1992; 38(3):127-32. PubMed ID: 1461844
    [No Abstract]   [Full Text] [Related]  

  • 55. GM2-ganglioside metabolism in cultured human skin fibroblasts: unambiguous diagnosis of GM2-gangliosidosis.
    Raghavan S; Krusell A; Lyerla TA; Bremer EG; Kolodny EH
    Biochim Biophys Acta; 1985 Apr; 834(2):238-48. PubMed ID: 3995063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysosomal Glycosphingolipid Storage Diseases.
    Breiden B; Sandhoff K
    Annu Rev Biochem; 2019 Jun; 88():461-485. PubMed ID: 31220974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity.
    Marshall J; Nietupski JB; Park H; Cao J; Bangari DS; Silvescu C; Wilper T; Randall K; Tietz D; Wang B; Ying X; Leonard JP; Cheng SH
    Mol Ther; 2019 Aug; 27(8):1495-1506. PubMed ID: 31208914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Encephaloneuropathy with lysosomal zebra bodies and GM2 ganglioside storage.
    Strømme P; Månsson JE; Scott H; Skullerud K; Hovig T
    Pediatr Neurol; 1997 Feb; 16(2):141-4. PubMed ID: 9090689
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease.
    Breiden B; Sandhoff K
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32272755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Miglustat: substrate reduction therapy for lysosomal storage disorders associated with primary central nervous system involvement.
    Pastores GM
    Recent Pat CNS Drug Discov; 2006 Jan; 1(1):77-82. PubMed ID: 18221193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.