These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1236798)

  • 1. Selenium binding to beef-kidney rhodanese.
    Cannella C; Pecci L; Finazzi Agro A; Federici G; Pensa B; Cavallini D
    Eur J Biochem; 1975 Jun; 55(1):285-9. PubMed ID: 1236798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms.
    Cannella C; Berni R; Rosato N; Finazzi-Agrò A
    Biochemistry; 1986 Nov; 25(23):7319-23. PubMed ID: 3467793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of rhodanese by pyridoxal 5'-phosphate.
    Cannella C; Pecci L; Costa M; Pensa B; Cavallini D
    Eur J Biochem; 1975 Aug; 56(1):283-7. PubMed ID: 1236801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanylation of rhodanese by 2-nitro-5-thiocyanobenzoic acid.
    Pecci L; Cannella C; Pensa B; Costa M; Cavallini D
    Biochim Biophys Acta; 1980 Jun; 623(2):348-53. PubMed ID: 6930978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical characterization of sulfane sulfurtransferase.
    Aird BA; Horowitz PM
    Biochim Biophys Acta; 1990 Mar; 1038(1):10-7. PubMed ID: 2317511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral studies of the tryptophan exposure in the enzyme rhodanese.
    Guido K; Baillie RD; Horowitz PM
    Biochim Biophys Acta; 1976 Apr; 427(2):600-7. PubMed ID: 1268221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New crystalline derivatives of bovine liver rhodanese.
    Berni R; Cannella C; Monaco HL; Rossi GL
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis.
    Horowitz P; Criscimagna NL
    J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase.
    Bonomi F; Pagani S; Cerletti P; Cannella C
    Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azotobacter vinelandii rhodanese: selenium loading and ion interaction studies.
    Melino S; Cicero DO; Orsale M; Forlani F; Pagani S; Paci M
    Eur J Biochem; 2003 Oct; 270(20):4208-15. PubMed ID: 14519133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceptor substrate-potentiated inactivation of bovine liver rhodanese.
    Aird BA; Horowitz PM
    J Biol Chem; 1988 Oct; 263(30):15270-6. PubMed ID: 3170581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system.
    Ogasawara Y; Lacourciere G; Stadtman TC
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9494-8. PubMed ID: 11493708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain structural flexibility in rhodanese examined by quenching of a phosphorescent probe.
    Koloczek H; Vanderkooi JM
    Biochim Biophys Acta; 1987 Nov; 916(2):236-44. PubMed ID: 2445385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecies differences in rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) activity in liver, kidney and plasma.
    Drawbaugh RB; Marrs TC
    Comp Biochem Physiol B; 1987; 86(2):307-10. PubMed ID: 3105953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aromatic residue content of the enzyme rhodanese.
    Baillie RD; Horowitz PM
    Biochim Biophys Acta; 1976 Apr; 427(2):594-9. PubMed ID: 1268220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L; Heinrikson RL; Westley J
    J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of cyanolysis of the rhodanese-thionitrobenzoate complex.
    Pensa B; Costa M; Cannella C; Pecci L; Cavallini D
    Ital J Biochem; 1980; 29(4):266-72. PubMed ID: 6938499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.