These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 12368245)
1. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Pérez-Ortín JE; Querol A; Puig S; Barrio E Genome Res; 2002 Oct; 12(10):1533-9. PubMed ID: 12368245 [TBL] [Abstract][Full Text] [Related]
2. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719 [TBL] [Abstract][Full Text] [Related]
4. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Novo M; Bigey F; Beyne E; Galeote V; Gavory F; Mallet S; Cambon B; Legras JL; Wincker P; Casaregola S; Dequin S Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16333-8. PubMed ID: 19805302 [TBL] [Abstract][Full Text] [Related]
5. [Comparative genetics of yeast Saccharomyces cerevisiae: chromosomal translocations carrying the SUC2 marker]. Naumov GI; Naumova ES Genetika; 2011 Feb; 47(2):168-73. PubMed ID: 21516788 [TBL] [Abstract][Full Text] [Related]
6. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations. Crosato G; Nadai C; Carlot M; Garavaglia J; Ziegler DR; Rossi RC; De Castilhos J; Campanaro S; Treu L; Giacomini A; Corich V FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32436567 [TBL] [Abstract][Full Text] [Related]
7. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast. Tosato V; Waghmare SK; Bruschi CV Chromosoma; 2005 May; 114(1):15-27. PubMed ID: 15843952 [TBL] [Abstract][Full Text] [Related]
8. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Rachidi N; Barre P; Blondin B Mol Gen Genet; 1999 Jun; 261(4-5):841-50. PubMed ID: 10394922 [TBL] [Abstract][Full Text] [Related]
9. Structural characterization of chromosome I size variants from a natural yeast strain. Carro D; García-Martinez J; Pérez-Ortín JE; Piña B Yeast; 2003 Jan; 20(2):171-83. PubMed ID: 12518320 [TBL] [Abstract][Full Text] [Related]
10. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Tosato V; Sims J; West N; Colombin M; Bruschi CV Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680 [TBL] [Abstract][Full Text] [Related]
11. A family of laboratory strains of Saccharomyces cerevisiae carry rearrangements involving chromosomes I and III. Casaregola S; Nguyen HV; Lepingle A; Brignon P; Gendre F; Gaillardin C Yeast; 1998 Apr; 14(6):551-64. PubMed ID: 9605505 [TBL] [Abstract][Full Text] [Related]
12. Evolution of gene order in the genomes of two related yeast species. Fischer G; Neuvéglise C; Durrens P; Gaillardin C; Dujon B Genome Res; 2001 Dec; 11(12):2009-19. PubMed ID: 11731490 [TBL] [Abstract][Full Text] [Related]
13. Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Tang XX; Wen XP; Qi L; Sui Y; Zhu YX; Zheng DQ Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466757 [TBL] [Abstract][Full Text] [Related]
15. The Saccharomyces cerevisiae W303-K6001 cross-platform genome sequence: insights into ancestry and physiology of a laboratory mutt. Ralser M; Kuhl H; Ralser M; Werber M; Lehrach H; Breitenbach M; Timmermann B Open Biol; 2012 Aug; 2(8):120093. PubMed ID: 22977733 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous deletions and reciprocal translocations in Saccharomyces cerevisiae: influence of ploidy. Tourrette Y; Schacherer J; Fritsch E; Potier S; Souciet JL; de Montigny J Mol Microbiol; 2007 Apr; 64(2):382-95. PubMed ID: 17493124 [TBL] [Abstract][Full Text] [Related]