BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12368330)

  • 1. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression.
    Fujinaga K; Irwin D; Geyer M; Peterlin BM
    J Virol; 2002 Nov; 76(21):10873-81. PubMed ID: 12368330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein.
    Garber ME; Wei P; KewalRamani VN; Mayall TP; Herrmann CH; Rice AP; Littman DR; Jones KA
    Genes Dev; 1998 Nov; 12(22):3512-27. PubMed ID: 9832504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner.
    Michels AA; Nguyen VT; Fraldi A; Labas V; Edwards M; Bonnet F; Lania L; Bensaude O
    Mol Cell Biol; 2003 Jul; 23(14):4859-69. PubMed ID: 12832472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro.
    Zhu Y; Pe'ery T; Peng J; Ramanathan Y; Marshall N; Marshall T; Amendt B; Mathews MB; Price DH
    Genes Dev; 1997 Oct; 11(20):2622-32. PubMed ID: 9334325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication.
    Richter S; Ping YH; Rana TM
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7928-33. PubMed ID: 12048247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of multiple cyclin subunits of human P-TEFb.
    Peng J; Zhu Y; Milton JT; Price DH
    Genes Dev; 1998 Mar; 12(5):755-62. PubMed ID: 9499409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro.
    Mancebo HS; Lee G; Flygare J; Tomassini J; Luu P; Zhu Y; Peng J; Blau C; Hazuda D; Price D; Flores O
    Genes Dev; 1997 Oct; 11(20):2633-44. PubMed ID: 9334326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The TAR binding dynamics and its implication in Tat degradation mechanism.
    Ning S; Zeng C; Zeng C; Zhao Y
    Biophys J; 2021 Dec; 120(23):5158-5168. PubMed ID: 34762866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P-TEFb kinase recruitment and function at heat shock loci.
    Lis JT; Mason P; Peng J; Price DH; Werner J
    Genes Dev; 2000 Apr; 14(7):792-803. PubMed ID: 10766736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.
    Asamitsu K; Fujinaga K; Okamoto T
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29673219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat.
    Ryu J; Lee HJ; Kim KA; Lee JY; Lee KS; Park J; Choi SY
    Mol Cells; 2004 Apr; 17(2):353-9. PubMed ID: 15179054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human GLI-2 is a tat activation response element-independent Tat cofactor.
    Browning CM; Smith MJ; Clark NM; Lane BR; Parada C; Montano M; KewalRamani VN; Littman DR; Essex M; Roeder RG; Markovitz DM
    J Virol; 2001 Mar; 75(5):2314-23. PubMed ID: 11160734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making a Short Story Long: Regulation of P-TEFb and HIV-1 Transcriptional Elongation in CD4+ T Lymphocytes and Macrophages.
    Ramakrishnan R; Chiang K; Liu H; Budhiraja S; Donahue H; Rice AP
    Biology (Basel); 2012 Jun; 1(1):94-115. PubMed ID: 24832049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies.
    Horvath RM; Brumme ZL; Sadowski I
    Antimicrob Agents Chemother; 2024 Mar; 68(3):e0107223. PubMed ID: 38319085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV-1 Transcription Inhibition Using Small RNA-Binding Molecules.
    Khatkar P; Mensah G; Ning S; Cowen M; Kim Y; Williams A; Abulwerdi FA; Zhao Y; Zeng C; Le Grice SFJ; Kashanchi F
    Pharmaceuticals (Basel); 2023 Dec; 17(1):. PubMed ID: 38256867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a low-population binding intermediate in protein-RNA recognition.
    Borkar AN; Bardaro MF; Camilloni C; Aprile FA; Varani G; Vendruscolo M
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7171-6. PubMed ID: 27286828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of HyT-Based Degraders of CDK9-Cyclin T1 Complex.
    Lin R; Yang J; Liu T; Wang M; Ke C; Luo C; Lin J; Li J; Lin H
    Chem Biodivers; 2023 Aug; 20(8):e202300769. PubMed ID: 37349855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction.
    Zhu R; Lu X; Pradhan M; Armstrong SP; Storchan GB; Chow CC; Simons SS
    Biochemistry; 2014 Mar; 53(11):1753-67. PubMed ID: 24559102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform.
    Benjamin R; Giacoletto CJ; FitzHugh ZT; Eames D; Buczek L; Wu X; Newsome J; Han MV; Pearson T; Wei Z; Banerjee A; Brown L; Valente LJ; Shen S; Deng HW; Schiller MR
    Genomics; 2022 Jul; 114(4):110439. PubMed ID: 35905834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.