BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12368400)

  • 1. Gamma-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs.
    Chung S; Kong S; Seong K; Cho Y
    J Nutr; 2002 Oct; 132(10):3090-7. PubMed ID: 12368400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effect of gromwell (Lithospermum erythrorhizon) extract and borage oil on reversing epidermal hyperproliferation in guinea pigs.
    Kim J; Kim H; Jeong do H; Kim SH; Park SK; Cho Y
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2086-95. PubMed ID: 16960390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borage Oil Enhances Lamellar Body Content and Alters Fatty Acid Composition of Epidermal Ceramides in Essential Fatty Acid-Deficient Guinea Pigs.
    Kim KP; Shin KO; Park K; Cho Y
    Lipids; 2021 May; 56(3):345-353. PubMed ID: 33378788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Borage oil restores acidic skin pH by up-regulating the activity or expression of filaggrin and enzymes involved in epidermal lactate, free fatty acid, and acidic free amino acid metabolism in essential fatty acid-deficient Guinea pigs.
    Kim KP; Jeon S; Kim MJ; Cho Y
    Nutr Res; 2018 Oct; 58():26-35. PubMed ID: 30340812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs.
    Shin KO; Kim K; Jeon S; Seo CH; Lee YM; Cho Y
    Lipids; 2015 Oct; 50(10):1051-6. PubMed ID: 26233818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs.
    Lee JY; Liu KH; Cho Y; Kim KP
    Nutrients; 2019 Nov; 11(11):. PubMed ID: 31752143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary gamma-linolenic acid suppresses aortic smooth muscle cell proliferation and modifies atherosclerotic lesions in apolipoprotein E knockout mice.
    Fan YY; Ramos KS; Chapkin RS
    J Nutr; 2001 Jun; 131(6):1675-81. PubMed ID: 11385052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positional distribution of FA in TAG of enzymatically modified borage and evening primrose oils.
    Senanayake SP; Shahidi F
    Lipids; 2002 Aug; 37(8):803-10. PubMed ID: 12371752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil.
    Palombo JD; DeMichele SJ; Liu JW; Bistrian BR; Huang YS
    Lipids; 2000 Sep; 35(9):975-81. PubMed ID: 11026618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gammalinolenic acid-enriched diet alters cutaneous eicosanoids.
    Miller CC; Ziboh VA
    Biochem Biophys Res Commun; 1988 Aug; 154(3):967-74. PubMed ID: 2841938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary influences of evening primrose and fish oil on the skin of essential fatty acid-deficient guinea pigs.
    Chapkin RS; Ziboh VA; McCullough JL
    J Nutr; 1987 Aug; 117(8):1360-70. PubMed ID: 3625311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis.
    Simon D; Eng PA; Borelli S; Kägi R; Zimmermann C; Zahner C; Drewe J; Hess L; Ferrari G; Lautenschlager S; Wüthrich B; Schmid-Grendelmeier P
    Adv Ther; 2014 Feb; 31(2):180-8. PubMed ID: 24435467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary intake of concentrated gamma-linolenic acid (GLA)-enriched oil suppresses cutaneous level of dihomo-gamma-linolenic acid (DGLA): possible in vivo inhibition of microsomal elongation of GLA to DGLA.
    Navarette R; Tang W; Ziboh VA
    Prostaglandins Leukot Essent Fatty Acids; 1992 Jun; 46(2):139-44. PubMed ID: 1323857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.
    Ide T; Iwase H; Amano S; Sunahara S; Tachihara A; Yagi M; Watanabe T
    J Nutr Biochem; 2017 Mar; 41():42-55. PubMed ID: 28040580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Borage or primrose oil added to standardized diets are equivalent sources for gamma-linolenic acid in rats.
    Raederstorff D; Moser U
    Lipids; 1992 Dec; 27(12):1018-23. PubMed ID: 1336802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of natural oils as sources of gamma-linolenic acid to correct peripheral nerve conduction velocity abnormalities in diabetic rats: modulation by thromboxane A2 inhibition.
    Dines KC; Cotter MA; Cameron NE
    Prostaglandins Leukot Essent Fatty Acids; 1996 Sep; 55(3):159-65. PubMed ID: 8931113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites.
    Miller CC; Tang W; Ziboh VA; Fletcher MP
    J Invest Dermatol; 1991 Jan; 96(1):98-103. PubMed ID: 1987303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary alteration of dihomogamma-linolenic acid/arachidonic acid ratio in a rat 5/6-renal-ablation model. The Nutrition & Kidney Disease Research Group.
    Ingram AJ; Parbtani A; Clark WF; Spanner E; Huff MW; Philbrick DJ; Holub BJ; Scholey JW
    J Am Soc Nephrol; 1996 Jul; 7(7):1024-31. PubMed ID: 8829117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.
    Fletcher MP; Ziboh VA
    Inflammation; 1990 Oct; 14(5):585-97. PubMed ID: 2174410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats.
    Liu JW; DeMichele SJ; Palombo J; Chuang LT; Hastilow C; Bobik E; Huang YS
    J Agric Food Chem; 2004 Jun; 52(12):3960-6. PubMed ID: 15186123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.