These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12368470)

  • 1. Folding free energy function selects native-like protein sequences in the core but not on the surface.
    Jaramillo A; Wernisch L; Héry S; Wodak SJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13554-9. PubMed ID: 12368470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferable coarse-grained potential for de novo protein folding and design.
    Coluzza I
    PLoS One; 2014; 9(12):e112852. PubMed ID: 25436908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selecting sequences that fold into a defined 3D structure: A new approach for protein design based on molecular dynamics and energetics.
    Morra G; Baragli C; Colombo G
    Biophys Chem; 2010 Feb; 146(2-3):76-84. PubMed ID: 19926206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved design of stable and fast-folding model proteins.
    Abkevich VI; Gutin AM; Shakhnovich EI
    Fold Des; 1996; 1(3):221-30. PubMed ID: 9079383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved recognition of native-like protein structures using a family of designed sequences.
    Koehl P; Levitt M
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):691-6. PubMed ID: 11782533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic protein design with all atom force-fields by exact and heuristic optimization.
    Wernisch L; Hery S; Wodak SJ
    J Mol Biol; 2000 Aug; 301(3):713-36. PubMed ID: 10966779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native protein sequences are close to optimal for their structures.
    Kuhlman B; Baker D
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10383-8. PubMed ID: 10984534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring local and non-local interactions for protein stability by structural motif engineering.
    Niggemann M; Steipe B
    J Mol Biol; 2000 Feb; 296(1):181-95. PubMed ID: 10656826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased detection of structural templates using alignments of designed sequences.
    Larson SM; Garg A; Desjarlais JR; Pande VS
    Proteins; 2003 May; 51(3):390-6. PubMed ID: 12696050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Another look at the conditions for the extraction of protein knowledge-based potentials.
    Betancourt MR
    Proteins; 2009 Jul; 76(1):72-85. PubMed ID: 19089977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model.
    Mirny LA; Abkevich V; Shakhnovich EI
    Fold Des; 1996; 1(2):103-16. PubMed ID: 9079370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In search of the ideal protein sequence.
    Godzik A
    Protein Eng; 1995 May; 8(5):409-16. PubMed ID: 8532661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing folding codes for proteins and polymers.
    Chan HS; Dill KA
    Proteins; 1996 Mar; 24(3):335-44. PubMed ID: 8778780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.