These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12368502)

  • 21. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC.
    Proveniers M; Rutjens B; Brand M; Smeekens S
    Plant J; 2007 Dec; 52(5):899-913. PubMed ID: 17908157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression.
    Andersson CR; Helliwell CA; Bagnall DJ; Hughes TP; Finnegan EJ; Peacock WJ; Dennis ES
    Plant Cell Physiol; 2008 Feb; 49(2):191-200. PubMed ID: 18156133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Eom H; Park SJ; Kim MK; Kim H; Kang H; Lee I
    Plant J; 2018 Jan; 93(1):79-91. PubMed ID: 29086456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How is FLC repression initiated by cold?
    Helliwell CA; Anderssen RS; Robertson M; Finnegan EJ
    Trends Plant Sci; 2015 Feb; 20(2):76-82. PubMed ID: 25600480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis.
    Li Z; Ou Y; Zhang Z; Li J; He Y
    Mol Plant; 2018 Sep; 11(9):1135-1146. PubMed ID: 29969683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of flowering time by histone acetylation in Arabidopsis.
    He Y; Michaels SD; Amasino RM
    Science; 2003 Dec; 302(5651):1751-4. PubMed ID: 14593187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C.
    Kim S; Choi K; Park C; Hwang HJ; Lee I
    Plant Cell; 2006 Nov; 18(11):2985-98. PubMed ID: 17138694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat can erase epigenetic marks of vernalization in Arabidopsis.
    Bouché F; Detry N; Périlleux C
    Plant Signal Behav; 2015; 10(3):e990799. PubMed ID: 25648822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis.
    Deal RB; Kandasamy MK; McKinney EC; Meagher RB
    Plant Cell; 2005 Oct; 17(10):2633-46. PubMed ID: 16141450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata.
    Kemi U; Niittyvuopio A; Toivainen T; Pasanen A; Quilot-Turion B; Holm K; Lagercrantz U; Savolainen O; Kuittinen H
    New Phytol; 2013 Jan; 197(1):323-335. PubMed ID: 23106477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus.
    Finnegan EJ; Sheldon CC; Jardinaud F; Peacock WJ; Dennis ES
    Curr Biol; 2004 May; 14(10):911-6. PubMed ID: 15186749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression.
    Zhu P; Lister C; Dean C
    Nature; 2021 Nov; 599(7886):657-661. PubMed ID: 34732891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes.
    Hepworth J; Antoniou-Kourounioti RL; Berggren K; Selga C; Tudor EH; Yates B; Cox D; Collier Harris BR; Irwin JA; Howard M; Säll T; Holm S; Dean C
    Elife; 2020 Sep; 9():. PubMed ID: 32902380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history.
    Madrid E; Chandler JW; Coupland G
    J Exp Bot; 2021 Jan; 72(1):4-14. PubMed ID: 32369593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of gene repression by vernalization in Arabidopsis.
    Sheldon CC; Finnegan EJ; Peacock WJ; Dennis ES
    Plant J; 2009 Aug; 59(3):488-98. PubMed ID: 19368695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Encoding memory of winter by noncoding RNAs.
    Heo JB; Sung S
    Epigenetics; 2011 May; 6(5):544-7. PubMed ID: 21406964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear organization changes and the epigenetic silencing of FLC during vernalization.
    Zhu D; Rosa S; Dean C
    J Mol Biol; 2015 Feb; 427(3):659-69. PubMed ID: 25180639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.
    Schmitz RJ; Amasino RM
    Biochim Biophys Acta; 2007; 1769(5-6):269-75. PubMed ID: 17383745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response.
    Bond DM; Dennis ES; Pogson BJ; Finnegan EJ
    Mol Plant; 2009 Jul; 2(4):724-737. PubMed ID: 19825652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
    Noh YS; Amasino RM
    Plant Cell; 2003 Jul; 15(7):1671-82. PubMed ID: 12837955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.