These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 1236851)
1. Clinical considerations in the choice of materials for orthopedic internal prostheses. Scales JT; Winter GD J Biomed Mater Res; 1975 Jul; 9(4):167-76. PubMed ID: 1236851 [TBL] [Abstract][Full Text] [Related]
2. Materials testing protocol for small joint prostheses. Savory KM; Hutchinson DT; Bloebaum R J Biomed Mater Res; 1994 Oct; 28(10):1209-19. PubMed ID: 7829550 [TBL] [Abstract][Full Text] [Related]
3. On the mechanical testing of some implants and materials. McNeice GM Med Prog Technol; 1977 Sep; 5(2):67-72. PubMed ID: 927396 [TBL] [Abstract][Full Text] [Related]
4. Biomaterial optimization in total disc arthroplasty. Hallab N; Link HD; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185 [TBL] [Abstract][Full Text] [Related]
5. Materials for bone and joint replacement. Langer G Z Exp Chir Transplant Kunstliche Organe; 1983; 16(4):203-12. PubMed ID: 6624172 [No Abstract] [Full Text] [Related]
6. Recent developments in implants for orthopedic surgery. Amstutz HC Surg Annu; 1971; 3(0):385-408. PubMed ID: 4950717 [No Abstract] [Full Text] [Related]
7. Design and evaluation of the FlexiCore metal-on-metal intervertebral disc prosthesis. Valdevit A; Errico TJ Spine J; 2004; 4(6 Suppl):276S-288S. PubMed ID: 15541677 [TBL] [Abstract][Full Text] [Related]
8. Biostability considerations for implantable polyurethanes. Coury AJ; Stokes KB; Cahalan PT; Slaikeu PC Life Support Syst; 1987; 5(1):25-39. PubMed ID: 3586708 [TBL] [Abstract][Full Text] [Related]
9. Biomaterial and design concepts to minimize wear in total joint arthroplasties. Lemons JE Semin Arthroplasty; 1994 Jan; 5(1):45-51. PubMed ID: 10146634 [TBL] [Abstract][Full Text] [Related]
10. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464 [TBL] [Abstract][Full Text] [Related]
15. [New materials improve joint prostheses. Metals, polymers, ceramics and composite materials extend the durability]. Carlsson L; Johansson C Lakartidningen; 1999 May; 96(20):2458-60, 2463-7. PubMed ID: 10380491 [TBL] [Abstract][Full Text] [Related]
16. [Use of new materials results in improved prostheses. Metals, polymers, ceramics and composite materials extend durability]. Carlsson L; Johansson C Ugeskr Laeger; 1999 Oct; 161(42):5786-92. PubMed ID: 10578693 [TBL] [Abstract][Full Text] [Related]
17. A review of pyrolytic carbon: application in bone and joint surgery. Tian CL; Hetherington VJ; Reed S J Foot Ankle Surg; 1993; 32(5):490-8. PubMed ID: 8252007 [TBL] [Abstract][Full Text] [Related]
18. The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities. Davies JP; O'Connor DO; Burke DW; Jasty M; Harris WH Clin Orthop Relat Res; 1988 Apr; (229):156-61. PubMed ID: 3349670 [TBL] [Abstract][Full Text] [Related]
19. Generalization of biomechanical rules for the fixation of bone, joint, and tooth replacements. Heimke G; Schulte W; Griss P; Jentschura G; Schulz P J Biomed Mater Res; 1980 Jul; 14(4):537-43. PubMed ID: 6995463 [No Abstract] [Full Text] [Related]
20. [Estimation of biocompatibility of fibers with large mechanical resistance]. Zywicka B Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]