These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 12368812)
1. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Dhankher OP; Li Y; Rosen BP; Shi J; Salt D; Senecoff JF; Sashti NA; Meagher RB Nat Biotechnol; 2002 Nov; 20(11):1140-5. PubMed ID: 12368812 [TBL] [Abstract][Full Text] [Related]
2. Pumping out the arsenic. Doucleff M; Terry N Nat Biotechnol; 2002 Nov; 20(11):1094-5. PubMed ID: 12410252 [No Abstract] [Full Text] [Related]
3. Identification and quantification of arsC genes in environmental samples by using real-time PCR. Sun Y; Polishchuk EA; Radoja U; Cullen WR J Microbiol Methods; 2004 Sep; 58(3):335-49. PubMed ID: 15279938 [TBL] [Abstract][Full Text] [Related]
4. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540 [TBL] [Abstract][Full Text] [Related]
5. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Lee DA; Chen A; Schroeder JI Plant J; 2003 Sep; 35(5):637-46. PubMed ID: 12940956 [TBL] [Abstract][Full Text] [Related]
6. Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. LeBlanc MS; Lima A; Montello P; Kim T; Meagher RB; Merkle S Int J Phytoremediation; 2011 Aug; 13(7):657-73. PubMed ID: 21972493 [TBL] [Abstract][Full Text] [Related]
7. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Bleeker PM; Hakvoort HW; Bliek M; Souer E; Schat H Plant J; 2006 Mar; 45(6):917-29. PubMed ID: 16507083 [TBL] [Abstract][Full Text] [Related]
8. Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Sundaram S; Wu S; Ma LQ; Rathinasabapathi B Plant Cell Environ; 2009 Jul; 32(7):851-8. PubMed ID: 19236608 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Prithivirajsingh S; Mishra SK; Mahadevan A Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390 [TBL] [Abstract][Full Text] [Related]
10. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Chen Y; Xu W; Shen H; Yan H; Xu W; He Z; Ma M Environ Sci Technol; 2013 Aug; 47(16):9355-62. PubMed ID: 23899224 [TBL] [Abstract][Full Text] [Related]
11. Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product. DeMel S; Shi J; Martin P; Rosen BP; Edwards BF Protein Sci; 2004 Sep; 13(9):2330-40. PubMed ID: 15295115 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Li Y; Dhankher OP; Carreira L; Lee D; Chen A; Schroeder JI; Balish RS; Meagher RB Plant Cell Physiol; 2004 Dec; 45(12):1787-97. PubMed ID: 15653797 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase. Messens J; Martins JC; Brosens E; Van Belle K; Jacobs DM; Willem R; Wyns L J Biol Inorg Chem; 2002 Jan; 7(1-2):146-56. PubMed ID: 11862551 [TBL] [Abstract][Full Text] [Related]
14. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. Meagher RB; Heaton AC J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854 [TBL] [Abstract][Full Text] [Related]
15. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Yang HC; Cheng J; Finan TM; Rosen BP; Bhattacharjee H J Bacteriol; 2005 Oct; 187(20):6991-7. PubMed ID: 16199569 [TBL] [Abstract][Full Text] [Related]
16. Arsenic hazards: strategies for tolerance and remediation by plants. Tripathi RD; Srivastava S; Mishra S; Singh N; Tuli R; Gupta DK; Maathuis FJ Trends Biotechnol; 2007 Apr; 25(4):158-65. PubMed ID: 17306392 [TBL] [Abstract][Full Text] [Related]
17. An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Rylott EL; Jackson RG; Edwards J; Womack GL; Seth-Smith HM; Rathbone DA; Strand SE; Bruce NC Nat Biotechnol; 2006 Feb; 24(2):216-9. PubMed ID: 16429147 [TBL] [Abstract][Full Text] [Related]
18. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Ellis DR; Gumaelius L; Indriolo E; Pickering IJ; Banks JA; Salt DE Plant Physiol; 2006 Aug; 141(4):1544-54. PubMed ID: 16766666 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Nahar N; Rahman A; Nawani NN; Ghosh S; Mandal A J Plant Physiol; 2017 Nov; 218():121-126. PubMed ID: 28818758 [TBL] [Abstract][Full Text] [Related]
20. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Guo J; Dai X; Xu W; Ma M Chemosphere; 2008 Jul; 72(7):1020-6. PubMed ID: 18504054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]