These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12369184)

  • 1. Genome plasticity in Lactococcus lactis.
    Campo N; Dias MJ; Daveran-Mingot ML; Ritzenthaler P; Le Bourgeois P
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):123-32. PubMed ID: 12369184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of phages and prophages in lactic acid bacteria.
    Desiere F; Lucchini S; Canchaya C; Ventura M; Brüssow H
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):73-91. PubMed ID: 12369206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis.
    Campo N; Daveran-Mingot ML; Leenhouts K; Ritzenthaler P; Le Bourgeois P
    Appl Environ Microbiol; 2002 May; 68(5):2359-67. PubMed ID: 11976109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization of Lactococci.
    Davidson BE; Kordias N; Baseggio N; Lim A; Dobos M; Hillier AJ
    Dev Biol Stand; 1995; 85():411-22. PubMed ID: 8586212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the functionality and genetic diversity of lactococcal prophages.
    Kelleher P; Mahony J; Schweinlin K; Neve H; Franz CM; van Sinderen D
    Int J Food Microbiol; 2018 May; 272():29-40. PubMed ID: 29524768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain.
    Bouchard JD; Moineau S
    Virology; 2000 Apr; 270(1):65-75. PubMed ID: 10772980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.
    Shimizu-Kadota M; Kato H; Shiwa Y; Oshima K; Machii M; Araya-Kojima T; Zendo T; Hattori M; Sonomoto K; Yoshikawa H
    Biosci Biotechnol Biochem; 2013; 77(9):1804-8. PubMed ID: 24018670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages.
    Labrie SJ; Moineau S
    J Bacteriol; 2007 Feb; 189(4):1482-7. PubMed ID: 17041060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omics-based comparative analysis of putative mobile genetic elements in Lactococcus lactis.
    Andersen JM; Pedersen CM; Bang-Berthelsen CH
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31074793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T.
    Desiere F; Mahanivong C; Hillier AJ; Chandry PS; Davidson BE; Brüssow H
    Virology; 2001 May; 283(2):240-52. PubMed ID: 11336549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative and functional genomics of lactococci.
    Kok J; Buist G; Zomer AL; van Hijum SA; Kuipers OP
    FEMS Microbiol Rev; 2005 Aug; 29(3):411-33. PubMed ID: 15936843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions.
    Campo N; Dias MJ; Daveran-Mingot ML; Ritzenthaler P; Le Bourgeois P
    Mol Microbiol; 2004 Jan; 51(2):511-22. PubMed ID: 14756790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum.
    Suzuki N; Tsuge Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2005 Apr; 67(2):225-33. PubMed ID: 15834716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains.
    Ventura M; Zomer A; Canchaya C; O'Connell-Motherway M; Kuipers O; Turroni F; Ribbera A; Foroni E; Buist G; Wegmann U; Shearman C; Gasson MJ; Fitzgerald GF; Kok J; van Sinderen D
    Appl Environ Microbiol; 2007 Dec; 73(23):7771-80. PubMed ID: 17933937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome.
    Iguchi A; Iyoda S; Terajima J; Watanabe H; Osawa R
    Gene; 2006 May; 372():199-207. PubMed ID: 16516407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minisatellite polymorphism as a tool to distinguish closely related Lactococcus lactis strains.
    Quénée P; Lepage E; Kim WS; Vergnaud G; Gruss A
    FEMS Microbiol Lett; 2005 Jul; 248(1):101-9. PubMed ID: 15963663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis and related databases of Lactococcus lactis.
    Kuipers OP; de Jong A; Baerends RJ; van Hijum SA; Zomer AL; Karsens HA; den Hengst CD; Kramer NE; Buist G; Kok J
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):113-22. PubMed ID: 12369183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species.
    Mahony J; Deveau H; Mc Grath S; Ventura M; Canchaya C; Moineau S; Fitzgerald GF; van Sinderen D
    FEMS Microbiol Lett; 2006 Aug; 261(2):253-61. PubMed ID: 16907729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome.
    Bolotin A; Mauger S; Malarme K; Ehrlich SD; Sorokin A
    Antonie Van Leeuwenhoek; 1999; 76(1-4):27-76. PubMed ID: 10532372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural diversity and adaptive responses of Lactococcus lactis.
    van Hylckama Vlieg JE; Rademaker JL; Bachmann H; Molenaar D; Kelly WJ; Siezen RJ
    Curr Opin Biotechnol; 2006 Apr; 17(2):183-90. PubMed ID: 16517150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.