BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12369189)

  • 1. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals.
    Hugenholtz J; Sybesma W; Groot MN; Wisselink W; Ladero V; Burgess K; van Sinderen D; Piard JC; Eggink G; Smid EJ; Savoy G; Sesma F; Jansen T; Hols P; Kleerebezem M
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):217-35. PubMed ID: 12369189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling.
    Kleerebezem M; Boels IC; Groot MN; Mierau I; Sybesma W; Hugenholtz J
    J Biotechnol; 2002 Sep; 98(2-3):199-213. PubMed ID: 12141987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathway engineering in lactic acid bacteria.
    Kleerebezem M; Hugenholtz J
    Curr Opin Biotechnol; 2003 Apr; 14(2):232-7. PubMed ID: 12732327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.
    Monedero V; Pérez-Martínez G; Yebra MJ
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1003-15. PubMed ID: 20180114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of sugar catabolism in lactic acid bacteria.
    de Vos WM
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):223-42. PubMed ID: 8879408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives.
    John RP; Nampoothiri KM; Pandey A
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):524-34. PubMed ID: 17225102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide metabolism and its control in lactic acid bacteria.
    Kilstrup M; Hammer K; Ruhdal Jensen P; Martinussen J
    FEMS Microbiol Rev; 2005 Aug; 29(3):555-90. PubMed ID: 15935511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food phenolics and lactic acid bacteria.
    Rodríguez H; Curiel JA; Landete JM; de las Rivas B; López de Felipe F; Gómez-Cordovés C; Mancheño JM; Muñoz R
    Int J Food Microbiol; 2009 Jun; 132(2-3):79-90. PubMed ID: 19419788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylolytic bacterial lactic acid fermentation - a review.
    Reddy G; Altaf M; Naveena BJ; Venkateshwar M; Kumar EV
    Biotechnol Adv; 2008; 26(1):22-34. PubMed ID: 17884326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.
    Gaspar P; Carvalho AL; Vinga S; Santos H; Neves AR
    Biotechnol Adv; 2013 Nov; 31(6):764-88. PubMed ID: 23567148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria.
    Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria.
    Thomsen MH; Guyot JP; Kiel P
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):540-6. PubMed ID: 17109171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.
    Bai DM; Zhao XM; Li XG; Xu SM
    Biotechnol Bioeng; 2004 Dec; 88(6):681-9. PubMed ID: 15532044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of exopolysaccharides by two strains of Lactobacillus bulgaricus in whey-based media.
    Iliev I; Radoilska E; Ivanova I; Enikova R
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):511-6. PubMed ID: 15954646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.
    Garai-Ibabe G; Ibarburu I; Berregi I; Claisse O; Lonvaud-Funel A; Irastorza A; Dueñas MT
    Int J Food Microbiol; 2008 Feb; 121(3):253-61. PubMed ID: 18180066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exopolysaccharides from lactic acid bacteria: perspectives and challenges.
    Welman AD; Maddox IS
    Trends Biotechnol; 2003 Jun; 21(6):269-74. PubMed ID: 12788547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M.
    Bergmaier D; Champagne CP; Lacroix C
    J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation.
    Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z
    Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.