These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 12369191)

  • 41. Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering.
    Kleerebezemab M; Hols P; Hugenholtz J
    Enzyme Microb Technol; 2000 Jun; 26(9-10):840-848. PubMed ID: 10862894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Nuclear magnetic resonance based metabolic phenotyping for patient evaluations in operating rooms and intensive care units].
    Blaise BJ; Gouel-Chéron A; Floccard B; Monneret G; Plaisant F; Chassard D; Javouhey E; Claris O; Allaouchiche B
    Ann Fr Anesth Reanim; 2014 Mar; 33(3):167-75. PubMed ID: 24456616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nuclear magnetic resonance analysis of cell metabolism.
    Zupke C; Foy B
    Curr Opin Biotechnol; 1995 Apr; 6(2):192-7. PubMed ID: 7734747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).
    Mourão MA; Srividhya J; McSharry PE; Crampin EJ; Schnell S
    PLoS One; 2011; 6(11):e27534. PubMed ID: 22096591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the glycolytic activity of blood and exudate leucocytes.
    HARTMAN JD; REIDENBERG M
    J Appl Physiol; 1958 May; 12(3):477-81. PubMed ID: 13525314
    [No Abstract]   [Full Text] [Related]  

  • 46. Reaction engineering methods to study intracellular metabolite concentrations.
    Weuster-Botz D; de Graaf AA
    Adv Biochem Eng Biotechnol; 1996; 54():75-108. PubMed ID: 8623615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear magnetic resonance spectroscopy of dense cell populations for metabolic studies and bioreactor engineering: a synergistic partnership.
    Dale BE; Gillies RJ
    Biotechnology; 1991; 17():107-18. PubMed ID: 2049536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioprocessing, including separations.
    Monceaux DA; Short DR
    Appl Biochem Biotechnol; 2004; 113-116():449-51. PubMed ID: 15241867
    [No Abstract]   [Full Text] [Related]  

  • 49. Proteomics and
    Zhang C; Wang Z; Zhang D; Zhou J; Lu C; Su X; Ding D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23704-23713. PubMed ID: 28864971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systems biology of lactic acid bacteria: a critical review.
    Teusink B; Bachmann H; Molenaar D
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S11. PubMed ID: 21995498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.
    Jia G; Stephanopoulos GN; Gunawan R
    Bioinformatics; 2011 Jul; 27(14):1964-70. PubMed ID: 21558155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of neutral biochemical network models from time series data.
    Vilela M; Vinga S; Maia MA; Voit EO; Almeida JS
    BMC Syst Biol; 2009 May; 3():47. PubMed ID: 19416537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. System estimation from metabolic time-series data.
    Goel G; Chou IC; Voit EO
    Bioinformatics; 2008 Nov; 24(21):2505-11. PubMed ID: 18772153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated smoother for the numerical decoupling of dynamics models.
    Vilela M; Borges CC; Vinga S; Vasconcelos AT; Santos H; Voit EO; Almeida JS
    BMC Bioinformatics; 2007 Aug; 8():305. PubMed ID: 17711581
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological systems modeling and analysis: a biomolecular technique of the twenty-first century.
    Goel G; Chou IC; Voit EO
    J Biomol Tech; 2006 Sep; 17(4):252-69. PubMed ID: 17028166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of lactic acid bacteria studied by nuclear magnetic resonance.
    Ramos A; Neves AR; Santos H
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):249-61. PubMed ID: 12369191
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.