These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12369515)
1. Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Lehtola MJ; Miettinen IT; Vartiainen T; Martikainen PJ Water Res; 2002 Sep; 36(15):3681-90. PubMed ID: 12369515 [TBL] [Abstract][Full Text] [Related]
2. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Lehtola MJ; Miettinen IT; Vartiainen T; Myllykangas T; Martikainen PJ Water Res; 2001 May; 35(7):1635-40. PubMed ID: 11329664 [TBL] [Abstract][Full Text] [Related]
3. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Lehtola MJ; Miettinen IT; Vartiainen T; Rantakokko P; Hirvonen A; Martikainen PJ Water Res; 2003 Mar; 37(5):1064-70. PubMed ID: 12553981 [TBL] [Abstract][Full Text] [Related]
4. Biofilm formation in drinking water affected by low concentrations of phosphorus. Lehtola MJ; Miettinen IT; Martikainen PJ Can J Microbiol; 2002 Jun; 48(6):494-9. PubMed ID: 12166676 [TBL] [Abstract][Full Text] [Related]
5. Investigation of microbially available phosphorus (MAP) in flemish drinking water. Polanska M; Huysman K; Van Keer C Water Res; 2005 Jun; 39(11):2267-72. PubMed ID: 15936053 [TBL] [Abstract][Full Text] [Related]
6. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water. Matilainen A; Iivari P; Sallanko J; Heiska E; Tuhkanen T Environ Technol; 2006 Oct; 27(10):1171-80. PubMed ID: 17144266 [TBL] [Abstract][Full Text] [Related]
7. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Lehtola MJ; Juhna T; Miettinen IT; Vartiainen T; Martikainen PJ J Ind Microbiol Biotechnol; 2004 Dec; 31(11):489-94. PubMed ID: 15672281 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus and bacterial growth in drinking water. Miettinen IT; Vartiainen T; Martikainen PJ Appl Environ Microbiol; 1997 Aug; 63(8):3242-5. PubMed ID: 9251211 [TBL] [Abstract][Full Text] [Related]
9. [Relationship between phosphorus and bacterial regrowth in drinking water]. Jiang DL; Zhang XJ Huan Jing Ke Xue; 2004 Sep; 25(5):57-60. PubMed ID: 15623023 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method. van der Kooij D; Veenendaal HR; van der Mark EJ; Dignum M Water Res; 2017 Nov; 125():270-279. PubMed ID: 28865376 [TBL] [Abstract][Full Text] [Related]
11. Removal of soft deposits from the distribution system improves the drinking water quality. Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929 [TBL] [Abstract][Full Text] [Related]
12. NOM characteristics and treatabilities of ozonation processes. Chiang PC; Chang EE; Liang CH Chemosphere; 2002 Feb; 46(6):929-36. PubMed ID: 11922074 [TBL] [Abstract][Full Text] [Related]
13. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment. Amirsardari Y; Yu Q; Willams P Environ Technol; 2001 Sep; 22(9):1015-23. PubMed ID: 11816764 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems. Thayanukul P; Kurisu F; Kasuga I; Furumai H Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741 [TBL] [Abstract][Full Text] [Related]
15. Fluctuation of microcystins in water plant. Jia RB; Zhang XH; Zhang WH; Zhang GM; Wang ZS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(12):2867-75. PubMed ID: 14672321 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174 [TBL] [Abstract][Full Text] [Related]
17. A new sensitive bioassay for determination of microbially available phosphorus in water. Lehtola MJ; Miettinen IT; Vartiainen T; Martikainen PJ Appl Environ Microbiol; 1999 May; 65(5):2032-4. PubMed ID: 10223996 [TBL] [Abstract][Full Text] [Related]
18. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. von Gunten U Water Res; 2003 Apr; 37(7):1469-87. PubMed ID: 12600375 [TBL] [Abstract][Full Text] [Related]
19. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus limitation on bacterial regrowth in drinking water. Sang JQ; Zhang XH; Yu GZ; Wang ZS J Environ Sci (China); 2003 Nov; 15(6):773-8. PubMed ID: 14758895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]