These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12369527)

  • 1. Effects of fluid-flow velocity and water quality on planktonic and sessile microbial growth in water hydraulic system.
    Soini SM; Koskinen KT; Vilenius MJ; Puhakka JA
    Water Res; 2002 Sep; 36(15):3812-20. PubMed ID: 12369527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response of biofilm to pipe surface and fluid velocity.
    Cloete TE; Westaard D; van Vuuren SJ
    Water Sci Technol; 2003; 47(5):57-9. PubMed ID: 12701907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes.
    Lehtola MJ; Laxander M; Miettinen IT; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2006 Jun; 40(11):2151-60. PubMed ID: 16725175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of flow velocity on the dynamic behaviour of biofilm bacteria.
    Tsai YP
    Biofouling; 2005; 21(5-6):267-77. PubMed ID: 16522540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high and fluctuating pressure on microbial abundance and activity in a water hydraulic system.
    Soini SM; Koskinen KT; Vilenius MJ; Puhakka JA
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):669-74. PubMed ID: 11956752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.
    Lehtola MJ; Miettinen IT; Keinänen MM; Kekki TK; Laine O; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2004 Oct; 38(17):3769-79. PubMed ID: 15350429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of hydraulic conditions on microplastics biofilm development, shear stresses distribution, and microbial community structures in drinking water distribution pipes.
    Chen X; Lian XY; Wang Y; Chen S; Sun YR; Tao GL; Tan QW; Feng JC
    J Environ Manage; 2023 Jan; 325(Pt A):116510. PubMed ID: 36265230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms.
    Wang C; Miao L; Hou J; Wang P; Qian J; Dai S
    Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of biofilm formation by hydrodynamics of purified water in industrial distribution system.
    Florjanič M; Kristl J
    Int J Pharm; 2011 Feb; 405(1-2):16-22. PubMed ID: 21129467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The limitations of hydrodynamic removal of biofilms from the dead-ends in a model drinking water distribution system.
    Simunič U; Pipp P; Dular M; Stopar D
    Water Res; 2020 Jul; 178():115838. PubMed ID: 32361344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial activity of biofilm during start-up period of anaerobic hybrid reactor at low and high upflow feeding velocity.
    Suraruksa B; Nopharatana A; Chaiprasert P; Tanticharoen M; Bhumiratana S
    Water Sci Technol; 2003; 48(8):79-87. PubMed ID: 14682573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of soft deposits from the distribution system improves the drinking water quality.
    Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T
    Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation in a hot water system.
    Bagh LK; Albrechtsen HJ; Arvin E; Ovesen K
    Water Sci Technol; 2002; 46(9):95-101. PubMed ID: 12448457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of flow velocity on biofilm composition and microbial molecular ecological network in reclaimed water distribution systems.
    Khu ST; Changchun X; Wang T
    Chemosphere; 2023 Nov; 341():140010. PubMed ID: 37652246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.