These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 12369759)

  • 1. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and leaching of trifluralin, metolachlor, and metribuzin in a commerce soil.
    Kim JH; Feagley SE
    J Environ Sci Health B; 1998 Sep; 33(5):529-46. PubMed ID: 9731306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean.
    Krutz LJ; Koger CH; Locke MA; Steinriede RW
    J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana.
    Southwick LM; Grigg BC; Fouss JL; Kornecki TS
    J Agric Food Chem; 2003 Aug; 51(18):5355-61. PubMed ID: 12926883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.
    Southwick LM; Appelboom TW; Fouss JL
    J Agric Food Chem; 2009 Feb; 57(4):1413-20. PubMed ID: 19178284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation.
    Abdel-Rahman AR; Wauchope RD; Truman CC; Dowler CC
    J Environ Sci Health B; 1999 May; 34(3):381-96. PubMed ID: 10227190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.
    Gaynor JD; Tan CS; Drury CF; Welacky TW; Ng HY; Reynolds WD
    J Environ Qual; 2002; 31(1):300-8. PubMed ID: 11841063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of autumn-applied metolachlor in a clay loam in the northern U.S. Corn Belt.
    Sharratt B; Sander K; Tierney D
    J Environ Sci Health B; 2003 Jan; 38(1):37-48. PubMed ID: 12602822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention and runoff losses of atrazine and metribuzin in soil.
    Selim HM
    J Environ Qual; 2003; 32(3):1058-71. PubMed ID: 12809307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils.
    Mulbach CK; Porthouse JD; Jugsujinda A; DeLaune RD; Johnson AB
    J Environ Sci Health B; 2000 Nov; 35(6):689-704. PubMed ID: 11069013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss.
    Gaynor JD; Tan CS; Drury CF; Ng HY; Welacky TW; van Wesenbeeck IJ
    J Environ Qual; 2001; 30(2):561-72. PubMed ID: 11285918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA).
    Potter TL; Bosch DD; Strickland TC
    Sci Total Environ; 2014 Aug; 490():1-10. PubMed ID: 24836324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of subsurface drains on runoff losses of metolachlor and trifluralin from Mississippi River alluvial soil.
    Southwick LM; Willis GH; Mercado OA; Bengtson RL
    Arch Environ Contam Toxicol; 1997 Jan; 32(1):106-9. PubMed ID: 9002441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An immunoassay for metolachlor detection in river water and soil.
    Hall JC; Wilson LK; Chapman RA
    J Environ Sci Health B; 1992 Oct; 27(5):523-44. PubMed ID: 1401728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil moisture and metolachlor volatilization observations over three years.
    Gish TJ; Prueger JH; Kustas WP; Daughtry CS; McKee LG; Russ A; Hatfield JL
    J Environ Qual; 2009; 38(5):1785-95. PubMed ID: 19643743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tillage management to mitigate herbicide loss in runoff under simulated rainfall conditions.
    Locke MA; Zablotowicz RM; Reddy KN; Steinriede RW
    Chemosphere; 2008 Feb; 70(8):1422-8. PubMed ID: 17963817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.
    Shipitalo MJ; Malone RW; Owens LB
    J Environ Qual; 2008; 37(2):401-8. PubMed ID: 18268303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods.
    Boithias L; Sauvage S; Taghavi L; Merlina G; Probst JL; PĂ©rez JM
    J Hazard Mater; 2011 Nov; 196():210-9. PubMed ID: 21945686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.