BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12369784)

  • 1. Phosphate and calcium uptake by rat odontoblast-like MRPC-1 cells concomitant with mineralization.
    Lundquist P; Ritchie HH; Moore K; Lundgren T; Linde A
    J Bone Miner Res; 2002 Oct; 17(10):1801-13. PubMed ID: 12369784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Odontoblast phosphate and calcium transport in dentinogenesis.
    Lundquist P
    Swed Dent J Suppl; 2002; (154):1-52. PubMed ID: 12240523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport in dentinogenesis. An experimental study in the rat incisor odontoblast.
    Lundgren T
    Swed Dent J Suppl; 1992; 82():1-91. PubMed ID: 1329245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From serum to the mineral phase. The role of the odontoblast in calcium transport and mineral formation.
    Linde A; Lundgren T
    Int J Dev Biol; 1995 Feb; 39(1):213-22. PubMed ID: 7626409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic phosphate regulates Glvr-1 and -2 expression: role of calcium and ERK1/2.
    Wittrant Y; Bourgine A; Khoshniat S; Alliot-Licht B; Masson M; Gatius M; Rouillon T; Weiss P; Beck L; Guicheux J
    Biochem Biophys Res Commun; 2009 Apr; 381(2):259-63. PubMed ID: 19232318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of regucalcin enhances its nuclear localization and suppresses L-type Ca2+ channel and calcium-sensing receptor mRNA expressions in cloned normal rat kidney proximal tubular epithelial NRK52E cells.
    Nakagawa T; Yamaguchi M
    J Cell Biochem; 2006 Nov; 99(4):1064-77. PubMed ID: 16767692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel aspects in regulated expression of the renal type IIa Na/Pi-cotransporter.
    Bacic D; Wagner CA; Hernando N; Kaissling B; Biber J; Murer H
    Kidney Int Suppl; 2004 Oct; (91):S5-S12. PubMed ID: 15461703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat lung alveolar type II cell line maintains sodium transport characteristics of primary culture.
    Michaut P; Planes C; Escoubet B; Clement A; Amiel C; Clerici C
    J Cell Physiol; 1996 Oct; 169(1):78-86. PubMed ID: 8841424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression.
    Tenenhouse HS; Gauthier C; Martel J; Gesek FA; Coutermarsh BA; Friedman PA
    J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemistry of extracellular matrix proteins during various stages of dentinogenesis.
    Bronckers AL; Lyaruu DM; Wöltgens JH
    Connect Tissue Res; 1989; 22(1-4):65-70. PubMed ID: 2689085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central control of renal sodium-phosphate (NaPi-2) transporters.
    Mulroney SE; Woda CB; Halaihel N; Louie B; McDonnell K; Schulkin J; Haramati A; Levi M
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F647-52. PubMed ID: 14644753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the NPT gene by a naturally occurring antisense transcript.
    Werner A; Preston-Fayers K; Dehmelt L; Nalbant P
    Cell Biochem Biophys; 2002; 36(2-3):241-52. PubMed ID: 12139410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: evidence for cellular processing of Ca2+ and Pi prior to matrix mineralization.
    Wu LN; Ishikawa Y; Sauer GR; Genge BR; Mwale F; Mishima H; Wuthier RE
    J Cell Biochem; 1995 Feb; 57(2):218-37. PubMed ID: 7759559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of antisense oligonucleotide against mouse dentine matrix protein 1 on mineralization ability and calcium ions metabolism in odontoblast-like cell line MDPC-23.
    Pang JL; Wu BL; He WX; Zhang YQ; Zhao HP; Xie ZH
    Int Endod J; 2006 Jul; 39(7):527-37. PubMed ID: 16776757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dentin mineralization and the role of odontoblasts in calcium transport.
    Linde A
    Connect Tissue Res; 1995; 33(1-3):163-70. PubMed ID: 7554949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcineurin Abeta is central to the expression of the renal type II Na/Pi co-transporter gene and to the regulation of renal phosphate transport.
    Moz Y; Levi R; Lavi-Moshayoff V; Cox KB; Molkentin JD; Silver J; Naveh-Many T
    J Am Soc Nephrol; 2004 Dec; 15(12):2972-80. PubMed ID: 15579499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to phosphate depletion in opossum kidney cells.
    Saxena S; Dansby L; Allon M
    Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.