These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12369788)

  • 1. Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli.
    Wang X; Mao JJ
    J Bone Miner Res; 2002 Oct; 17(10):1843-50. PubMed ID: 12369788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocyte proliferation of the cranial base cartilage upon in vivo mechanical stresses.
    Wang X; Mao JJ
    J Dent Res; 2002 Oct; 81(10):701-5. PubMed ID: 12351669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suture growth modulated by the oscillatory component of micromechanical strain.
    Kopher RA; Mao JJ
    J Bone Miner Res; 2003 Mar; 18(3):521-8. PubMed ID: 12619937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry and cell density of rat craniofacial sutures during early postnatal development and upon in vivo cyclic loading.
    Vij K; Mao JJ
    Bone; 2006 May; 38(5):722-30. PubMed ID: 16413234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periosteum responds to dynamic fluid pressure by proliferating in vitro.
    Saris DB; Sanyal A; An KN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1999 Sep; 17(5):668-77. PubMed ID: 10569475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of mechanical loading on the mRNA expression of growth-plate cells.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Stud Health Technol Inform; 2002; 91():114-8. PubMed ID: 15457706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells.
    Huang CY; Hagar KL; Frost LE; Sun Y; Cheung HS
    Stem Cells; 2004; 22(3):313-23. PubMed ID: 15153608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of neonatal growth plate development by ex vivo intermittent mechanical stress.
    Othman H; Thonar EJ; Mao JJ
    J Biomech; 2007; 40(12):2686-93. PubMed ID: 17346717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tensile force on expression of PTHrP and thickness of hypertrophic zone in organ-cultured mouse spheno-occipital synchondroses.
    Rukkulchon BK; Wong RW
    Arch Oral Biol; 2008 Jul; 53(7):690-9. PubMed ID: 18343352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indian and sonic hedgehogs regulate synchondrosis growth plate and cranial base development and function.
    Young B; Minugh-Purvis N; Shimo T; St-Jacques B; Iwamoto M; Enomoto-Iwamoto M; Koyama E; Pacifici M
    Dev Biol; 2006 Nov; 299(1):272-82. PubMed ID: 16935278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian limb loading and chondral modeling during ontogeny.
    Hammond AS; Ning J; Ward CV; Ravosa MJ
    Anat Rec (Hoboken); 2010 Apr; 293(4):658-70. PubMed ID: 20235322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure.
    Mukherjee N; Saris DB; Schultz FM; Berglund LJ; An KN; O' Driscoll SW
    J Orthop Res; 2001 Jul; 19(4):524-30. PubMed ID: 11518256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y; Kim SH; Kim YH; Kim SH
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix and gene expression in the rat cranial base growth plate.
    Tang M; Mao JJ
    Cell Tissue Res; 2006 Jun; 324(3):467-74. PubMed ID: 16525834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local treatment of cricoid cartilage defects with rhBMP-2 induces growth plate-like morphology of chondrogenesis.
    Tcacencu I; Carlsöö B; Stierna P; Hultenby K
    Otolaryngol Head Neck Surg; 2006 Sep; 135(3):427-33. PubMed ID: 16949977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histomorphological and proliferative characterization of developing periosteal neochondrocytes in vitro.
    Ito Y; Sanyal A; Fitzsimmons JS; Mello MA; O'Driscoll SW
    J Orthop Res; 2001 May; 19(3):405-13. PubMed ID: 11398853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of dynamic axial loading on the rat growth plate.
    Ohashi N; Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2002 Feb; 17(2):284-92. PubMed ID: 11811559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrocytes isolated from tibial dyschondroplasia lesions and articular cartilage revert to a growth plate-like phenotype when cultured in vitro.
    Wu LN; Ishikawa Y; Genge BR; Wuthier RE
    J Cell Physiol; 2005 Jan; 202(1):167-77. PubMed ID: 15389532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease.
    Grover JP; Vanderby R; Leiferman EM; Wilsman NJ; Noonan KJ
    J Pediatr Orthop; 2007; 27(5):485-92. PubMed ID: 17585254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.