These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 12369970)
21. Rhodamine labeling of 3-hydroxy-4-pyridinone iron chelators is an important contribution to target Mycobacterium avium infection. Moniz T; Nunes A; Silva AM; Queirós C; Ivanova G; Gomes MS; Rangel M J Inorg Biochem; 2013 Apr; 121():156-66. PubMed ID: 23384853 [TBL] [Abstract][Full Text] [Related]
22. Synthesis, physicochemical properties, and biological evaluation of N-substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential. Dobbin PS; Hider RC; Hall AD; Taylor PD; Sarpong P; Porter JB; Xiao G; van der Helm D J Med Chem; 1993 Aug; 36(17):2448-58. PubMed ID: 8355246 [TBL] [Abstract][Full Text] [Related]
23. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Fibach E; Rachmilewitz EA Ann N Y Acad Sci; 2010 Aug; 1202():10-6. PubMed ID: 20712766 [TBL] [Abstract][Full Text] [Related]
24. Synthetic and natural products as iron chelators. Sharpe PC; Richardson DR; Kalinowski DS; Bernhardt PV Curr Top Med Chem; 2011; 11(5):591-607. PubMed ID: 21189130 [TBL] [Abstract][Full Text] [Related]
25. New iron chelators in anthracycline-induced cardiotoxicity. Kaiserová H; Simunek T; Sterba M; den Hartog GJ; Schröterová L; Popelová O; Gersl V; Kvasnicková E; Bast A Cardiovasc Toxicol; 2007; 7(2):145-50. PubMed ID: 17652820 [TBL] [Abstract][Full Text] [Related]
26. Design and synthesis of N-hydroxyalkyl substituted deferiprone: a kind of iron chelating agents for Parkinson's disease chelation therapy strategy. Zhang Q; Feng S; Zhao Y; Jin B; Peng R J Biol Inorg Chem; 2021 Jun; 26(4):467-478. PubMed ID: 33963933 [TBL] [Abstract][Full Text] [Related]
28. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Mena NP; García-Beltrán O; Lourido F; Urrutia PJ; Mena R; Castro-Castillo V; Cassels BK; Núñez MT Biochem Biophys Res Commun; 2015 Aug; 463(4):787-92. PubMed ID: 26051278 [TBL] [Abstract][Full Text] [Related]
29. Iron as the malignant spirit in successful ageing. Polla AS; Polla LL; Polla BS Ageing Res Rev; 2003 Jan; 2(1):25-37. PubMed ID: 12437994 [TBL] [Abstract][Full Text] [Related]
30. Design, synthesis, and characterization of novel iron chelators: structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. Kalinowski DS; Yu Y; Sharpe PC; Islam M; Liao YT; Lovejoy DB; Kumar N; Bernhardt PV; Richardson DR J Med Chem; 2007 Jul; 50(15):3716-29. PubMed ID: 17602603 [TBL] [Abstract][Full Text] [Related]
31. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Liu G; Men P; Harris PL; Rolston RK; Perry G; Smith MA Neurosci Lett; 2006 Oct; 406(3):189-93. PubMed ID: 16919875 [TBL] [Abstract][Full Text] [Related]
32. Chapter 5 - Development of iron chelator-nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Liu G; Men P; Perry G; Smith MA Prog Brain Res; 2009; 180():97-108. PubMed ID: 20302830 [TBL] [Abstract][Full Text] [Related]
33. A multifunctional, light-activated prochelator inhibits UVA-induced oxidative stress. Franks AT; Wang Q; Franz KJ Bioorg Med Chem Lett; 2015 Nov; 25(21):4843-4847. PubMed ID: 26152427 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and biological properties of iron chelators based on a bis-2-(2-hydroxy-phenyl)-thiazole-4-carboxamide or -thiocarboxamide (BHPTC) scaffold. Rodriguez-Lucena D; Gaboriau F; Rivault F; Schalk IJ; Lescoat G; Mislin GL Bioorg Med Chem; 2010 Jan; 18(2):689-95. PubMed ID: 20036563 [TBL] [Abstract][Full Text] [Related]
35. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. Ferlazzo N; Visalli G; Cirmi S; Lombardo GE; Laganà P; Di Pietro A; Navarra M Environ Toxicol Pharmacol; 2016 Apr; 43():248-56. PubMed ID: 27037654 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis. Hruskova K; Kovarikova P; Bendova P; Haskova P; Mackova E; Stariat J; Vavrova A; Vavrova K; Simunek T Chem Res Toxicol; 2011 Mar; 24(3):290-302. PubMed ID: 21214215 [TBL] [Abstract][Full Text] [Related]
37. Phytochelators Intended for Clinical Use in Iron Overload, Other Diseases of Iron Imbalance and Free Radical Pathology. Kontoghiorghe CN; Kolnagou A; Kontoghiorghes GJ Molecules; 2015 Nov; 20(11):20841-72. PubMed ID: 26610453 [TBL] [Abstract][Full Text] [Related]
38. Lysosomal iron, iron chelation, and cell death. Terman A; Kurz T Antioxid Redox Signal; 2013 Mar; 18(8):888-98. PubMed ID: 22909065 [TBL] [Abstract][Full Text] [Related]
39. The medicinal chemistry of novel iron chelators for the treatment of cancer. Kovacevic Z; Kalinowski DS; Lovejoy DB; Yu Y; Suryo Rahmanto Y; Sharpe PC; Bernhardt PV; Richardson DR Curr Top Med Chem; 2011; 11(5):483-99. PubMed ID: 21192781 [TBL] [Abstract][Full Text] [Related]
40. 2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Jansová H; Kubeš J; Reimerová P; Štěrbová-Kovaříková P; Roh J; Šimůnek T Chem Res Toxicol; 2018 Nov; 31(11):1151-1163. PubMed ID: 30395451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]