BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12370130)

  • 21. In vivo persistent pigment darkening method: a demonstration of the reproducibility of the UVA protection factors results at several testing laboratories.
    Moyal D; Wichrowski K; Tricaud C
    Photodermatol Photoimmunol Photomed; 2006 Jun; 22(3):124-8. PubMed ID: 16719864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffuse reflectance spectroscopy for ultraviolet A protection factor measurement: correlation studies between in vitro and in vivo measurements.
    Ruvolo E; Chu M; Grossman F; Cole C; Kollias N
    Photodermatol Photoimmunol Photomed; 2009 Dec; 25(6):298-304. PubMed ID: 19906164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin.
    de Assis LVM; Moraes MN; Magalhães-Marques KK; Castrucci AML
    Eur J Cell Biol; 2018 Apr; 97(3):150-162. PubMed ID: 29395480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 5-S-cysteinyldopa and pigment response to UVA light.
    Tegner E; Rorsman H; Rosengren E
    Acta Derm Venereol; 1983; 63(1):21-5. PubMed ID: 6191484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sunscreen products: what do they protect us from?
    Couteau C; Couteau O; Alami-El Boury S; Coiffard LJ
    Int J Pharm; 2011 Aug; 415(1-2):181-4. PubMed ID: 21669263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo assessment of pigmentary and vascular compartments changes in UVA exposed skin by reflectance-mode confocal microscopy.
    Yamashita T; Akita H; Astner S; Miyakawa M; Lerner EA; González S
    Exp Dermatol; 2007 Nov; 16(11):905-11. PubMed ID: 17927573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation.
    Damiani E; Rosati L; Castagna R; Carloni P; Greci L
    J Photochem Photobiol B; 2006 Mar; 82(3):204-13. PubMed ID: 16442301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment.
    Marrot L; Belaidi JP; Meunier JR; Perez P; Agapakis-Causse C
    Photochem Photobiol; 1999 Jun; 69(6):686-93. PubMed ID: 10378007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relationship of immediate pigment darkening to minimal erythemal dose, skin type, and eye color.
    Agin PP; Desrochers DL; Sayre RM
    Photodermatol; 1985 Oct; 2(5):288-94. PubMed ID: 4070027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UVA protection efficacy of sunscreens can be determined by the persistent pigment darkening (PPD) method. (Part 2).
    Moyal D; Chardon A; Kollias N
    Photodermatol Photoimmunol Photomed; 2000 Dec; 16(6):250-5. PubMed ID: 11132127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues.
    Xiao L; Matsubayashi K; Miwa N
    Arch Dermatol Res; 2007 Aug; 299(5-6):245-57. PubMed ID: 17333222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The next frontier of sunscreen protection.
    Epstein HA
    Skinmed; 2011; 9(3):181-2. PubMed ID: 21675499
    [No Abstract]   [Full Text] [Related]  

  • 33. UVA protection labeling and in vitro testing methods.
    Moyal D
    Photochem Photobiol Sci; 2010 Apr; 9(4):516-23. PubMed ID: 20354645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis.
    Russo PA; Halliday GM
    Br J Dermatol; 2006 Aug; 155(2):408-15. PubMed ID: 16882182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protection of skin biological targets by different types of sunscreens.
    Fourtanier A; Bernerd F; Bouillon C; Marrot L; Moyal D; Seité S
    Photodermatol Photoimmunol Photomed; 2006 Feb; 22(1):22-32. PubMed ID: 16436178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical and experimental aspects of long-wave ultraviolet (UVA) irradiation of human skin.
    Beitner H
    Acta Derm Venereol Suppl (Stockh); 1986; 123():1-56. PubMed ID: 3538735
    [No Abstract]   [Full Text] [Related]  

  • 37. Chronic UVA exposure: protective effect on skin induced pigmentation by a daily use of a day care cream containing broad band sunscreen.
    Duteil I; Queille-Roussel C; Rougier A; Richard A; Ortonne JP
    Eur J Dermatol; 2002; 12(4):XVII-XVIII. PubMed ID: 12120614
    [No Abstract]   [Full Text] [Related]  

  • 38. The effects of UVA irradiation on depigmented sites in the skin of the hairless dog.
    Kimura T
    Photomed Laser Surg; 2009 Oct; 27(5):749-55. PubMed ID: 19712019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melanoma, long wavelength ultraviolet and sunscreens: controversies and potential resolutions.
    Lund LP; Timmins GS
    Pharmacol Ther; 2007 May; 114(2):198-207. PubMed ID: 17376535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The immediate action of long-wave ultraviolet radiation (UVA) on suprabasal melanocytes in human skin: a transmission electron microscopical study.
    Beitner H; Wennersten G
    Acta Derm Venereol; 1983; 63(4):328-34. PubMed ID: 6195865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.