These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 12370179)
1. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases. Rafty LA; Schmidt MT; Perraud AL; Scharenberg AM; Denu JM J Biol Chem; 2002 Dec; 277(49):47114-22. PubMed ID: 12370179 [TBL] [Abstract][Full Text] [Related]
2. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Tong L; Denu JM Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146 [TBL] [Abstract][Full Text] [Related]
3. Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose. Lee S; Tong L; Denu JM Anal Biochem; 2008 Dec; 383(2):174-9. PubMed ID: 18812159 [TBL] [Abstract][Full Text] [Related]
4. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3. Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885 [TBL] [Abstract][Full Text] [Related]
5. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Borra MT; Langer MR; Slama JT; Denu JM Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642 [TBL] [Abstract][Full Text] [Related]
6. Hydrolase regulates NAD+ metabolites and modulates cellular redox. Tong L; Lee S; Denu JM J Biol Chem; 2009 Apr; 284(17):11256-66. PubMed ID: 19251690 [TBL] [Abstract][Full Text] [Related]
7. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. Jackson MD; Denu JM J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into the mechanism of Escherichia coli YmdB: A 2'-O-acetyl-ADP-ribose deacetylase. Zhang W; Wang C; Song Y; Shao C; Zhang X; Zang J J Struct Biol; 2015 Dec; 192(3):478-486. PubMed ID: 26481419 [TBL] [Abstract][Full Text] [Related]
9. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Ono T; Kasamatsu A; Oka S; Moss J Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16687-91. PubMed ID: 17075046 [TBL] [Abstract][Full Text] [Related]
10. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793 [TBL] [Abstract][Full Text] [Related]
11. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1. Hirsch BM; Burgos ES; Schramm VL ACS Chem Biol; 2014 Oct; 9(10):2255-62. PubMed ID: 25051211 [TBL] [Abstract][Full Text] [Related]
12. One-step, nonenzymatic synthesis of O-acetyl-ADP-ribose and analogues from NAD and carboxylates. Szczepankiewicz BG; Koppetsch KJ; Perni RB J Org Chem; 2011 Aug; 76(16):6465-74. PubMed ID: 21639110 [TBL] [Abstract][Full Text] [Related]
13. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Smith BC; Denu JM Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603 [TBL] [Abstract][Full Text] [Related]
14. NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities. Debar L; Ishak L; Moretton A; Anoosheh S; Morel F; Jenninger L; Garreau-Balandier I; Vernet P; Hofer A; van den Wildenberg S; Farge G Mitochondrion; 2023 Jul; 71():93-103. PubMed ID: 37343711 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure and mutational analysis of human NUDT9. Shen BW; Perraud AL; Scharenberg A; Stoddard BL J Mol Biol; 2003 Sep; 332(2):385-98. PubMed ID: 12948489 [TBL] [Abstract][Full Text] [Related]
16. Human placenta hydrolases active on free ADP-ribose: an ADP-sugar pyrophosphatase and a specific ADP-ribose pyrophosphatase. Ribeiro JM; Carloto A; Costas MJ; Cameselle JC Biochim Biophys Acta; 2001 Apr; 1526(1):86-94. PubMed ID: 11287126 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of a new member of the Nudix hydrolases from human and mouse. Yang H; Slupska MM; Wei YF; Tai JH; Luther WM; Xia YR; Shih DM; Chiang JH; Baikalov C; Fitz-Gibbon S; Phan IT; Conrad A; Miller JH J Biol Chem; 2000 Mar; 275(12):8844-53. PubMed ID: 10722730 [TBL] [Abstract][Full Text] [Related]
18. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. Chen D; Vollmar M; Rossi MN; Phillips C; Kraehenbuehl R; Slade D; Mehrotra PV; von Delft F; Crosthwaite SK; Gileadi O; Denu JM; Ahel I J Biol Chem; 2011 Apr; 286(15):13261-71. PubMed ID: 21257746 [TBL] [Abstract][Full Text] [Related]
19. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family. Nguyen VN; Park A; Xu A; Srouji JR; Brenner SE; Kirsch JF Proteins; 2016 Dec; 84(12):1810-1822. PubMed ID: 27618147 [TBL] [Abstract][Full Text] [Related]
20. The ADP-ribose reactive NUDIX hydrolase isoforms can modulate HIF-1α in cancer cells. Yoon B; Yang EG; Kim SY Biochem Biophys Res Commun; 2018 Sep; 504(1):321-327. PubMed ID: 30190133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]