BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12370300)

  • 61. Cell cycle related expression of early activation antigens in human thymocytes.
    Pellicciari C; Beller T; Manfredi A; Zocchi MR
    Prog Histochem Cytochem; 1992; 26(1-4):223-8. PubMed ID: 1283017
    [No Abstract]   [Full Text] [Related]  

  • 62. Expression of ADP-ribosyltransferase on normal T lymphocytes and effects of nicotinamide adenine dinucleotide on their function.
    Okamoto S; Azhipa O; Yu Y; Russo E; Dennert G
    J Immunol; 1998 May; 160(9):4190-8. PubMed ID: 9574519
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A cell surface ADP-ribosyltransferase modulates T cell receptor association and signaling.
    Liu ZX; Yu Y; Dennert G
    J Biol Chem; 1999 Jun; 274(25):17399-401. PubMed ID: 10364166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies.
    Georgiev H; Ravens I; Papadogianni G; Malissen B; Förster R; Bernhardt G
    Eur J Immunol; 2018 Jun; 48(6):1078-1081. PubMed ID: 29508376
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure and function of eukaryotic mono-ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Rev Physiol Biochem Pharmacol; 1996; 129():51-104. PubMed ID: 8898563
    [TBL] [Abstract][Full Text] [Related]  

  • 66. P2X7 receptor-dependent and -independent T cell death is induced by nicotinamide adenine dinucleotide.
    Kawamura H; Aswad F; Minagawa M; Malone K; Kaslow H; Koch-Nolte F; Schott WH; Leiter EH; Dennert G
    J Immunol; 2005 Feb; 174(4):1971-9. PubMed ID: 15699125
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [The effect of mycophenolic acid on activation antigen expression and in vitro T lymphocytes proliferation in peripheral blood].
    Zheng W; Huang H; Xu C
    Zhonghua Nei Ke Za Zhi; 2002 May; 41(5):329-32. PubMed ID: 12133428
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H; Koch-Nolte F; Marquez VE; Schulz GE
    Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.
    Hottiger MO; Hassa PO; Lüscher B; Schüler H; Koch-Nolte F
    Trends Biochem Sci; 2010 Apr; 35(4):208-19. PubMed ID: 20106667
    [TBL] [Abstract][Full Text] [Related]  

  • 71. NAD(+)-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes.
    Maehama T; Nishina H; Hoshino S; Kanaho Y; Katada T
    J Biol Chem; 1995 Sep; 270(39):22747-51. PubMed ID: 7559400
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The expression pattern of ADP-ribosyltransferase 3 in rat traumatic brain injury.
    Shi W; Gong P; Fan J; Yan YH; Ni L; Wu X; Cui G; Wu X; Gu X; Chen J
    J Mol Histol; 2012 Feb; 43(1):37-47. PubMed ID: 22037978
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glutamic acid 207 in rodent T-cell RT6 antigens is essential for arginine-specific ADP-ribosylation.
    Hara N; Tsuchiya M; Shimoyama M
    J Biol Chem; 1996 Nov; 271(47):29552-5. PubMed ID: 8939882
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets.
    Cortés-Garcia JD; López-López C; Cortez-Espinosa N; García-Hernández MH; Guzmán-Flores JM; Layseca-Espinosa E; Portales-Cervantes L; Portales-Pérez DP
    Immunobiology; 2016 Jan; 221(1):84-93. PubMed ID: 26307000
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ADP-ribosylation of P2X7: a matter of life and death for regulatory T cells and natural killer T cells.
    Rissiek B; Haag F; Boyer O; Koch-Nolte F; Adriouch S
    Curr Top Microbiol Immunol; 2015; 384():107-26. PubMed ID: 25048544
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Increase in ADP-ribosyltransferase activity of rat T lymphocyte alloantigen RT6.1 by a single amino acid mutation.
    Maehama T; Hoshino S; Katada T
    FEBS Lett; 1996 Jun; 388(2-3):189-91. PubMed ID: 8690084
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 79. HIP-55 is important for T-cell proliferation, cytokine production, and immune responses.
    Han J; Shui JW; Zhang X; Zheng B; Han S; Tan TH
    Mol Cell Biol; 2005 Aug; 25(16):6869-78. PubMed ID: 16055701
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site.
    Adriouch S; Bannas P; Schwarz N; Fliegert R; Guse AH; Seman M; Haag F; Koch-Nolte F
    FASEB J; 2008 Mar; 22(3):861-9. PubMed ID: 17928361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.